
YAZ User’s Guide and Reference

Sebastian Hammer, Adam Dickmeiss, Mike Taylor, Heikki Levanto, and
Dennis Schafroth

Copyright © 1995-2023 Index Data

YAZ User’s Guide and Reference iii

COLLABORATORS

TITLE :

YAZ User’s Guide and Reference

ACTION NAME DATE SIGNATURE

WRITTEN BY Sebastian
Hammer, Adam
Dickmeiss, Mike

Taylor, Heikki
Levanto, and

Dennis Schafroth

January 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

YAZ User’s Guide and Reference v

Contents

1 Introduction 1

1.1 Reading this Manual . 1

1.2 The API . 2

2 Compilation and Installation 5

2.1 Introduction . 5

2.2 UNIX/MacOS . 5

2.2.1 Compiling from source on Unix . 6

2.2.2 Compiling from source on MacOS . 9

2.2.3 How to make apps using YAZ on UNIX . 9

2.3 Windows . 10

2.3.1 Compiling from Source on Windows . 10

2.3.2 How to make apps using YAZ on Windows . 12

2.3.3 Compiling Libxml2 and Libxslt on windows . 12

3 ZOOM 13

3.1 Connections . 13

3.1.1 Z39.50 Protocol behavior . 16

3.1.2 SRU/Solr Protocol behavior . 16

3.2 Queries . 17

3.3 Result sets . 17

3.3.1 Z39.50 Result-set Sort . 18

3.3.2 Z39.50 Protocol behavior . 20

3.3.3 SRU Protocol behavior . 20

3.4 Records . 21

3.4.1 Z39.50 Protocol behavior . 23

3.4.2 SRU/Solr Protocol behavior . 23

3.5 ZOOM Facets . 23

3.6 Scan . 24

3.7 Extended Services . 25

3.7.1 Item Order . 26

3.7.2 Record Update . 26

3.7.3 Database Create . 30

3.7.4 Database Drop . 30

3.7.5 Commit Operation . 30

3.7.6 Protocol behavior . 30

3.8 Options . 30

3.9 Query conversions . 31

3.10 Events . 31

4 Generic server 33
4.1 Introduction . 33

4.2 The Database Frontend . 33

4.3 The Backend API . 34

4.4 Your main() Routine . 34

4.5 The Backend Functions . 36

4.5.1 Init . 36

4.5.2 Search and Retrieve . 39

4.5.3 Delete . 42

4.5.4 Scan . 42

4.6 Application Invocation . 43

4.7 GFS Configuration and Virtual Hosts . 45

5 The Z39.50 ASN.1 Module 49
5.1 Introduction . 49

5.2 Preparing PDUs . 49

5.3 EXTERNAL Data . 51

5.4 PDU Contents Table . 52

6 SOAP and SRU 59
6.1 Introduction . 59

6.2 HTTP . 59

6.3 SOAP Packages . 60

6.4 SRU . 61

YAZ User’s Guide and Reference vii

7 Supporting Tools 65

7.1 Query Syntax Parsers . 65

7.1.1 Prefix Query Format . 65

7.1.1.1 Using Proximity Operators with PQF 68

7.1.1.2 PQF queries . 69

7.1.2 CCL . 70

7.1.2.1 CCL Syntax . 70

7.1.2.2 CCL Qualifiers . 72

7.1.2.2.1 Qualifier specification . 72

7.1.2.2.2 Qualifier alias . 73

7.1.2.2.3 Comments . 73

7.1.2.2.4 Directives . 73

7.1.2.3 CCL API . 75

7.1.3 CQL . 75

7.1.3.1 CQL parsing . 76

7.1.3.2 CQL tree . 77

7.1.3.3 CQL to PQF conversion . 78

7.1.3.4 Specification of CQL to RPN mappings 80

7.1.3.5 CQL to XCQL conversion . 82

7.1.3.6 PQF to CQL conversion . 83

7.2 Object Identifiers . 83

7.2.1 OID database . 84

7.2.2 Standard OIDs . 85

7.3 Nibble Memory . 85

7.4 Log . 86

7.5 MARC . 88

7.5.1 TurboMARC . 89

7.6 Retrieval Facility . 90

7.6.1 Retrieval XML format . 91

7.6.2 Retrieval Facility Examples . 93

7.6.3 API . 95

7.7 Sorting . 95

7.7.1 Using the Z39.50 sort service . 95

7.7.2 Type-7 sort . 95

7.8 Facets . 96

8 The ODR Module 97

8.1 Introduction . 97

8.2 Using ODR . 97

8.2.1 ODR Streams . 97

8.2.2 Memory Management . 98

8.2.3 Encoding and Decoding Data . 99

8.2.4 Printing . 101

8.2.5 Diagnostics . 102

8.2.6 Summary and Synopsis . 103

8.3 Programming with ODR . 104

8.3.1 The Primitive ASN.1 Types . 104

8.3.1.1 INTEGER . 104

8.3.1.2 BOOLEAN . 105

8.3.1.3 REAL . 105

8.3.1.4 NULL . 105

8.3.1.5 OCTET STRING . 105

8.3.1.6 BIT STRING . 106

8.3.1.7 OBJECT IDENTIFIER . 106

8.3.2 Tagging Primitive Types . 107

8.3.3 Constructed Types . 107

8.3.4 Tagging Constructed Types . 108

8.3.4.1 Implicit Tagging . 108

8.3.4.2 Explicit Tagging . 109

8.3.5 SEQUENCE OF . 110

8.3.6 CHOICE Types . 111

8.4 Debugging . 113

9 The COMSTACK Module 115

9.1 Synopsis (blocking mode) . 115

9.2 Introduction . 116

9.3 Common Functions . 117

9.3.1 Managing Endpoints . 117

9.3.2 Data Exchange . 117

9.4 Client Side . 119

YAZ User’s Guide and Reference ix

9.5 Server Side . 119

9.6 Addresses . 120

9.7 SSL . 121

9.8 Diagnostics . 122

9.9 Summary and Synopsis . 122

10 Future Directions 125

11 Reference 127

11.1 yaz-client . 127

11.2 yaz-ztest . 133

11.3 yaz-config . 139

11.4 yaz . 140

11.5 zoomsh . 141

11.6 yaz-asncomp . 143

11.7 yaz-marcdump . 145

11.8 yaz-iconv . 147

11.9 yaz-log . 148

11.10yaz-illclient . 151

11.11yaz-icu . 152

11.12yaz-url . 155

11.13Bib-1 Attribute Set . 156

11.14yaz-json-parse . 160

11.15yaz-record-iconv . 160

A List of Object Identifiers 163

B Bib-1 diagnostics 171

C SRU diagnostics 177

D License 181

D.1 Index Data Copyright . 181

E About Index Data 183

F Credits 185

YAZ User’s Guide and Reference xi

List of Figures

1.1 YAZ layers . 3

YAZ User’s Guide and Reference xiii

List of Tables

3.1 ZOOM Connection Options . 15

3.2 ZOOM sort strategy . 17

3.3 ZOOM Result set Options . 19

3.4 Search Info Report Options . 19

3.5 ZOOM Scan Set Options . 25

3.6 Extended Service Type . 26

3.7 Extended Service Common Options . 27

3.8 Item Order Options . 27

3.9 ILL Request Options . 28

3.10 Record Update Options . 29

3.11 Database Create Options . 30

3.12 Database Drop Options . 30

3.13 ZOOM Event IDs . 32

5.1 Default settings for PDU Initialize Request . 53

5.2 Default settings for PDU Initialize Response . 53

5.3 Default settings for PDU Search Request . 54

5.4 Default settings for PDU Search Response . 54

5.5 Default settings for PDU Present Request . 55

5.6 Default settings for PDU Present Response . 55

5.7 Default settings for Delete Result Set Request . 55

5.8 Default settings for Delete Result Set Response . 56

5.9 Default settings for Scan Request . 56

5.10 Default settings for Scan Response . 56

5.11 Default settings for Trigger Resource Control Request . 56

5.12 Default settings for Resource Control Request . 57

5.13 Default settings for Resource Control Response . 57

5.14 Default settings for Access Control Request . 57

5.15 Default settings for Access Control Response . 57

5.16 Default settings for Segment . 57

5.17 Default settings for Close . 58

7.1 Common Bib-1 attributes . 73

7.2 Special attribute combos . 74

7.3 CCL directives . 75

7.4 Facet attributes . 96

8.1 ODR Error codes . 103

Abstract

This document is the programmer’s guide and reference to the YAZ package version 5.34.0. YAZ is a
compact toolkit that provides access to the Z39.50 and SRU/Solr protocols, as well as a set of higher-level
tools for implementing the server and client roles, respectively. The documentation can be used on its own,
or as a reference when looking at the example applications provided with the package.

YAZ User’s Guide and Reference 1 / 186

Chapter 1

Introduction

YAZ is a C/C++ library for information retrieval applications using the Z39.50/SRU/Solr protocols for
information retrieval.

Properties of YAZ:

• Complete Z39.50 version 3 support. Amendments and Z39.50-2002 revision is supported.

• Supports SRU GET/POST/SOAP version 1.1, 1.2 and 2.0 (over HTTP and HTTPS).

• Includes BER encoders/decoders for the ISO ILL protocol.

• Supports Apache Solr Web Service version 1.4.x (client side only)

• Supports the following transports: BER over TCP/IP (RFC1729), BER over Unix local socket, and HTTP
1.1.

• Secure Socket Layer support using GnuTLS. If enabled, YAZ uses HTTPS transport (for SOAP) or "Se-
cure BER" (for Z39.50).

• Offers ZOOM C API implementing Z39.50, SRU and Solr Web Service.

• The YAZ library offers a set of useful utilities related to the protocols, such as MARC (ISO2709) parser,
CCL (ISO8777) parser, CQL parser, memory management routines, character set conversion.

• Portable code. YAZ compiles out-of-the box on most Unixes and on Windows using Microsoft Visual
C++.

• Fast operation. The C based BER encoders/decoders as well as the server component of YAZ is very fast.

• Liberal license that allows for commercial use of YAZ.

1.1 Reading this Manual

Most implementors only need to read a fraction of the material in this manual, so a quick walk-through of
the chapters is in order.

https://www.loc.gov/z3950/agency/
https://www.loc.gov/standards/sru/
http://www.nlc-bnc.ca/iso/ill/standard.htm
https://lucene.apache.org/solr/
http://www.faqs.org/rfcs/rfc1729.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.gnu.org/software/gnutls/
http://zoom.z3950.org/
http://www.loc.gov/standards/sru/cql/

• Chapter 2 contains installation instructions for YAZ. You don’t need to read this if you expect to download
YAZ binaries. However, the chapter contains information about how to make your application link with
YAZ.

• Chapter 3 describes the ZOOM API of YAZ. This is definitely worth reading if you wish to develop a
Z39.50/SRU client.

• Chapter 4 describes the generic front-end server and explains how to develop server Z39.50/SRU appli-
cations for YAZ. Obviously worth reading if you’re to develop a server.

• yaz-client(1) describes how to use the YAZ Z39.50 client. If you’re a developer and wish to test your
server or a server from another party, you might find this chapter useful.

• Chapter 5 documents the most commonly used Z39.50 C data structures offered by the YAZ API. Client
developers using ZOOM and non-Z39.50 implementors may skip this.

• Chapter 6 describes how SRU and SOAP is used in YAZ. Only if you’re developing SRU applications
this section is a must.

• Chapter 7 contains sections for the various tools offered by YAZ. Scan through the material quickly and
see what’s relevant to you! SRU implementors might find the CQL section particularly useful.

• Chapter 8 goes through the details of the ODR module which is the work horse that encodes and de-
codes BER packages. Implementors using ZOOM only, do not need to read this. Most other Z39.50
implementors only need to read the first two sections (Section 8.1 and Section 8.2).

• Chapter 9 describes the network layer module COMSTACK. Implementors using ZOOM or the generic
front-end server may skip this. Others, presumably, handling client/server communication on their own
should read this.

1.2 The API

The YAZ toolkit offers several different levels of access to the ISO23950/Z39.50, ILL and SRU protocols.
The level that you need to use depends on your requirements, and the role (server or client) that you want
to implement. If you’re developing a client application you should consider the ZOOM API. It is, by
far, the easiest way to develop clients in C. Server implementors should consider the generic front-end
server. None of those high-level APIs support the whole protocol, but they do include most facilities used
in existing Z39.50 applications.

If you’re using ’exotic’ functionality (meaning anything not included in the high-level APIs), developing
non-standard extensions to Z39.50 or you’re going to develop an ILL application, you’ll have to learn the
lower level APIs of YAZ.

The YAZ toolkit modules are shown in figure Figure 1.1.

http://www.indexdata.com/yaz
https://www.loc.gov/z3950/agency/
http://www.nlc-bnc.ca/iso/ill/standard.htm
https://www.loc.gov/standards/sru/

YAZ User’s Guide and Reference 3 / 186

Figure 1.1: YAZ layers

There are four layers.

• A client or server application (or both). This layer includes ZOOM and the generic front-end server.

• The second layer provides a C representation of the protocol units (packages) for Z39.50 ASN.1, ILL
ASN.1, SRU.

• The third layer encodes and decodes protocol data units to simple packages (buffer with certain length).
The ODR module encodes and decodes BER whereas the HTTP modules encodes and decodes HTTP
requests/responses.

• The lowest layer is COMSTACK which exchanges the encoded packages with a peer process over a
network.

The Z39.50 ASN.1 module represents the ASN.1 definition of the Z39.50 protocol. It establishes a set of
type and structure definitions, with one structure for each of the top-level PDUs, and one structure or type
for each of the contained ASN.1 types. For primitive types, or other types that are defined by the ASN.1
standard itself (such as the EXTERNAL type), the C representation is provided by the ODR (Open Data
Representation) subsystem.

ODR is a basic mechanism for representing an ASN.1 type in the C programming language, and for im-
plementing BER encoders and decoders for values of that type. The types defined in the Z39.50 ASN.1
module generally have the prefix Z_, and a suffix corresponding to the name of the type in the ASN.1
specification of the protocol (generally Z39.50-1995). In the case of base types (those originating in the
ASN.1 standard itself), the prefix Odr_ is sometimes seen. Either way, look for the actual definition in
either z-core.h (for the types from the protocol), odr.h (for the primitive ASN.1 types). The Z39.50
ASN.1 library also provides functions (which are, in turn, defined using ODR primitives) for encoding and
decoding data values. Their general form is

int z_xxx(ODR o, Z_xxx **p, int optional, const char *name);

(note the lower-case "z" in the function name)

Note
If you are using the premade definitions of the Z39.50 ASN.1 module, and you are not adding a new
protocol of your own, the only parts of ODR that you need to worry about are documented in Section 8.2.

When you have created a BER-encoded buffer, you can use the COMSTACK subsystem to transmit (or
receive) data over the network. The COMSTACK module provides simple functions for establishing a
connection (passively or actively, depending on the role of your application), and for exchanging BER-
encoded PDUs over that connection. When you create a connection endpoint, you need to specify what
transport to use (TCP/IP, SSL or UNIX sockets). For the remainder of the connection’s lifetime, you don’t
have to worry about the underlying transport protocol at all - the COMSTACK will ensure that the correct
mechanism is used.

We call the combined interfaces to ODR, Z39.50 ASN.1, and COMSTACK the service level API. It’s the
API that most closely models the Z39.50 service/protocol definition, and it provides unlimited access to all
fields and facilities of the protocol definitions.

The reason that the YAZ service-level API is a conglomerate of the APIs from three different sub-modules is
twofold. First, we wanted to allow the user a choice of different options for each major task. For instance, if
you don’t like the protocol API provided by ODR/Z39.50 ASN.1, you can use SNACC or BERUtils instead,
and still have the benefits of the transparent transport approach of the COMSTACK module. Secondly, we
realize that you may have to fit the toolkit into an existing event-processing structure, in a way that is
incompatible with the COMSTACK interface or some other part of YAZ.

YAZ User’s Guide and Reference 5 / 186

Chapter 2

Compilation and Installation

2.1 Introduction

The latest version of the software will generally be found at:

http://ftp.indexdata.com/pub/yaz/

We have tried our best to keep the software portable, and on many platforms, you should be able to compile
everything with little or no changes.

The software is regularly tested on Debian GNU/Linux, CentOS, Ubuntu Linux, FreeBSD (i386), MAC
OSX, Windows 10.

Some versions have be known to work on Windows XP, Solaris, HP/UX, DEC Unix, NetBSD, OpenBSD,
IBM AIX, Data General DG/UX (with some CFLAGS tinkering), SGI/IRIX, DDE Supermax, Apple Mac-
intosh (using the Codewarrior programming environment and the GUSI socket libraries), IBM AS/400 .

If you move the software to other platforms, we’d be grateful if you’d let us know about it. If you run into
difficulties, we will try to help if we can, and if you solve the problems, we would be happy to include your
fixes in the next release. So far, we have mostly avoided #ifdefs for individual platforms, and we’d like
to keep it that way as far as it makes sense.

We maintain a mailing-list for the purpose of announcing new releases and bug-fixes, as well as general
discussion. Subscribe by filling-in the form here. General questions and problems can be directed at
mailto:info@indexdata.com, or the address given at the top of this document.

2.2 UNIX/MacOS

We provide Debian GNU/Linux (i386 and amd64), Ubuntu (i386 and amd64) and CentOS (amd64 only)
packages for YAZ. You should be able to create packages for other CPUs by building them from the source
package.

YAZ is also part of several packages repositories. Some of them are

• Solaris CSW: http://www.opencsw.org/packages/yaz/

http://ftp.indexdata.com/pub/yaz/
https://www.debian.org/
https://www.centos.org/
https://www.ubuntu.com
https://www.freebsd.org/
https://www.apple.com/osx/
https://www.apple.com/osx/
https://www.netbsd.org
https://www.openbsd.org
http://lists.indexdata.dk/cgi-bin/mailman/listinfo/yazlist
mailto:info@indexdata.com
https://www.debian.org/
https://www.ubuntu.com
https://www.centos.org/
http://www.opencsw.org/packages/yaz/

• Solaris: http://unixpackages.com

• FreeBSD: http://www.freshports.org/net/yaz

• Debian: http://packages.debian.org/search?keywords=yaz

• Ubuntu: https://launchpad.net/ubuntu/+source/yaz

• NetBSD: http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/net/yaz/README.
html

2.2.1 Compiling from source on Unix

You can choose to compile YAZ from official tar releases from http://ftp.indexdata.com/pub/
yaz/ or clone it via GitHub https://github.com/indexdata/yaz.git.

If you wish to use character set conversion facilities in YAZ or if you are compiling YAZ for use with Zebra,
it is a good idea to ensure that the iconv library is installed. Some Unixes today already have it - if not, we
suggest GNU libiconv.

YAZ 3.0.16 and later includes a wrapper for the ICU (International Components for Unicode). In order
to use this, the developer version of the ICU library must be available. ICU support is recommended for
applications such as Pazpar2 and Zebra.

The libxslt, libxml2 libraries are required if YAZ is to support SRU/Solr. These libraries are very portable
and should compile out-of-the box on virtually all Unix platforms. It is available in binary forms for Linux
and others.

The GNU tools Autoconf, Automake and Libtool are used to generate Makefiles and configure YAZ for the
system. You do not need these tools unless you’re using the Git version of YAZ.

The CQL parser for YAZ is built using GNU Bison. This tool is only needed if you’re using the Git version
of YAZ.

YAZ includes a tiny ASN.1 compiler. This compiler is written in Tcl. But as for Bison you do not need it
unless you’re using Git version of YAZ or you’re using the compiler to build your own codecs for private
ASN.1.

If you are checking out from Git, run:

./buildconf.sh

This will create the configure script and Makefiles.

The next step is always:

./configure

The configure script attempts to use use the C compiler specified by the CC environment variable. If not set,
GNU C will be used if it is available. The CFLAGS environment variable holds options to be passed to the
C compiler. If you’re using Bourne-compatible shell, you may pass something like this to use a particular
C compiler with optimization enabled:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

http://unixpackages.com
http://www.freshports.org/net/yaz
http://packages.debian.org/search?keywords=yaz
https://launchpad.net/ubuntu/+source/yaz
http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/net/yaz/README.html
http://ftp.netbsd.org/pub/pkgsrc/current/pkgsrc/net/yaz/README.html
http://ftp.indexdata.com/pub/yaz/
http://ftp.indexdata.com/pub/yaz/
https://github.com/indexdata/yaz.git
https://www.gnu.org/software/libiconv/
http://www.icu-project.org/
http://xmlsoft.org/XSLT/
http://xmlsoft.org/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/libtool/
https://www.gnu.org/software/bison/
http://www.tcl.tk/

YAZ User’s Guide and Reference 7 / 186

To customize YAZ, the configure script also accepts a set of options. The most important are:

--prefix=prefix Specifies installation prefix for YAZ. This is only needed if you run make install
later to perform a "system" installation. The prefix is /usr/local if not specified.

--enable-tcpd The front end server will be built using Wietse’s TCP wrapper library. It allows you
to allow/deny clients depending on IP number. The TCP wrapper library is often used in GNU/Linux
and BSD distributions. See hosts_access(5) and tcpd(8).

--enable-threads YAZ will be built using POSIX threads. Specifically, _REENTRANT will be
defined during compilation.

--disable-shared The make process will not create shared libraries (also known as shared objects
.so). By default, shared libraries are created - equivalent to --enable-shared.

--disable-shared The make process will not create static libraries (.a). By default, static libraries
are created - equivalent to --enable-static.

--with-iconv[=prefix] Compile YAZ with iconv library in directory prefix. By default con-
figure will search for iconv on the system. Use this option if it doesn’t find iconv. Alternatively,
--without-iconv, can be used to force YAZ not to use iconv.

--with-xslt[=prefix] Compile YAZ with libxslt in directory prefix. Use this option if you want
XSLT and XML support. By default, configure will search for libxslt on the system. Use this option
if libxslt is not found automatically. Alternatively, --without-xslt, can be used to force YAZ
not to use libxslt.

--with-xml2[=prefix] Compile YAZ with libxml2 in directory prefix. Use this option if you want
YAZ to use XML and support SRU/Solr. By default, configure will search for libxml2 on the system.
Use this option if libxml2 is not found automatically. Alternatively, --without-xml2, can be used
to force YAZ not to use libxml2.

Note that option --with-xslt also enables libxml2.

--with-gnutls[=prefix] YAZ will be linked with the GNU TLS libraries and an SSL COMSTACK
will be provided. By default configure enables SSL support for YAZ if the GNU TLS development
libraries are found on the system.

--with-icu[=prefix] YAZ will be linked the ICU library in the prefix if given. If prefix is not given,
the libraries exposed by the script icu-config will be used if found.

--with-memcached YAZ will be linked with libMemcached to allow for result-set caching for ZOOM.
The prefix can not be given. Note that 0.40 of libmemcached is required.

--with-redis YAZ will be linked with the hiredis C library to allow for result-set caching for ZOOM
on a redis server. The prefix can not be given.

When configured, build the software by typing:

make

http://ftp.porcupine.org/pub/security/index.html
http://xmlsoft.org/XSLT/
http://xmlsoft.org/
http://www.icu-project.org/
https://libmemcached.org/
https://redis.io/

The following files are generated by the make process:

src/libyaz.la Main YAZ library. This is no ordinary library. It’s a Libtool archive. By default, YAZ
creates a static library in lib/.libs/libyaz.a.

src/libyaz_server.la Generic Frontend server. This is an add-on for libyaz.la. Code in this library
uses POSIX threads functions - if POSIX threads are available on the platform.

src/libyaz_icu.la Functions that wrap the ICU library.

ztest/yaz-ztest Test Z39.50 server.

client/yaz-client Z39.50 client for testing the protocol. See chapter YAZ client for more informa-
tion.

util/yaz-config A Bourne-shell script, generated by configure, that specifies how external applica-
tions should compile - and link with YAZ.

util/yaz-asncomp The ASN.1 compiler for YAZ. Requires the Tcl Shell, tclsh, in PATH to operate.

util/yaz-iconv This program converts data in one character set to another. This command exercises
the YAZ character set conversion API.

util/yaz-marcdump This program parses ISO2709 encoded MARC records and prints them in line-
format or XML.

util/yaz-icu This program exposes the ICU wrapper library if that is enabled for YAZ. Only if ICU
is available this program is useful.

util/yaz-url This program is a simple HTTP page fetcher ala wget or curl.

zoom/zoomsh A simple shell implemented on top of the ZOOM functions. The shell is a command line
application that allows you to enter simple commands to perform ZOOM operations.

zoom/zoomtst1, zoom/zoomtst2, .. Several small applications that demonstrate the ZOOM API.

If you wish to install YAZ in system directories /usr/local/bin, /usr/local/lib .. etc, you can
type:

make install

You probably need to have root access in order to perform this. You must specify the --prefix option
for configure if you wish to install YAZ in other directories than the default /usr/local/.

If you wish to perform an un-installation of YAZ, use:

make uninstall

This will only work if you haven’t reconfigured YAZ (and therefore changed installation prefix). Note that
uninstall will not remove directories created by make install, e.g. /usr/local/include/yaz.

YAZ User’s Guide and Reference 9 / 186

2.2.2 Compiling from source on MacOS

Compiling from source on MacOSX requires libxml2. This can be installed with Homebrew, for instance:
brew install libxml2

Review the Caveats section (brew info libxml2) for the LDFLAGS, CPPFLAGS, and PKG_CONFIG_PATH
environment variables before executing the ./compile command. For instance:

export LDFLAGS="-L/usr/local/opt/libxml2/lib"
export CPPFLAGS="-I/usr/local/opt/libxml2/include"
export PKG_CONFIG_PATH="/usr/local/opt/libxml2/lib/pkgconfig"
./configure
make

2.2.3 How to make apps using YAZ on UNIX

This section describes how to compile - and link your own applications using the YAZ toolkit. If you’re
used to Makefiles this shouldn’t be hard. As for other libraries you have used before, you need to set a
proper include path for your C/C++ compiler and specify the location of YAZ libraries. You can do it
by hand, but generally we suggest you use the yaz-config that is generated by configure. This is
especially important if you’re using the threaded version of YAZ which require you to pass more options to
your linker/compiler.

The yaz-config script accepts command line options that makes the yaz-config script print options
that you should use in your make process. The most important ones are: --cflags, --libswhich prints
C compiler flags, and linker flags respectively.

A small and complete Makefile for a C application consisting of one source file, myprog.c, may look
like this:

YAZCONFIG=/usr/local/bin/yaz-config
CFLAGS=‘$(YAZCONFIG) --cflags‘
LIBS=‘$(YAZCONFIG) --libs‘
myprog: myprog.o

$(CC) $(CFLAGS) -o myprog myprog.o $(LIBS)

The CFLAGS variable consists of a C compiler directive that will set the include path to the parent directory
of yaz. That is, if YAZ header files were installed in /usr/local/include/yaz, then include path
is set to /usr/local/include. Therefore, in your applications you should use

#include <yaz/proto.h>

and not

#include <proto.h>

For Libtool users, the yaz-config script provides a different variant of option --libs, called --lalibs
that returns the name of the Libtool archive(s) for YAZ rather than the ordinary ones.

For applications using the threaded version of YAZ, specify threads after the other options. When
threads is given, more flags and linker flags will be printed by yaz-config. If our previous example
was using threads, you’d have to modify the lines that set CFLAGS and LIBS as follows:

CFLAGS=‘$(YAZCONFIG) --cflags threads‘
LIBS=‘$(YAZCONFIG) --libs threads‘

There is no need specify POSIX thread libraries in your Makefile. The LIBS variable includes that as well.

2.3 Windows

The easiest way to install YAZ on Windows is by downloading an installer from Index Data’s Windows
support area . The installer comes with source too - in case you wish to compile YAZ with different
compiler options, etc.

2.3.1 Compiling from Source on Windows

YAZ is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual Studio. It has been
tested with Microsoft Visual Studio 2017 and 2019.

Start a command prompt and switch the sub directory WIN where the file makefile is located. Customize
the installation by editing the makefile file (for example by using notepad). The following summarizes
the most important settings in that file:

DEBUG If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded
debug DLL). If set to 0, the software is compiled with release libraries (code generation is multi-
threaded DLL).

HAVE_TCL, TCL If HAVE_TCL is set to 1, nmake will use the ASN.1 compiler (Tcl based). You must set
TCL to the full path of the Tcl interpreter. A Windows version of Tcl is part of Git for Windows.

If you do not have Tcl installed, set HAVE_TCL to 0.

HAVE_BISON, BISON If GNU Bison is present, you might set HAVE_BISON to 1 and specify the Bison
executable in BISON. Bison is only required if you use the Git version of YAZ or if you modify the
grammar for CQL (cql.y).

A Windows version of GNU Bison can be fetched from here: Index Data’s Windows support area .

HAVE_ICONV, ICONV_DIR If HAVE_ICONV is set to 1, YAZ is compiled with iconv support. In this
configuration, set ICONV_DIR to the iconv source directory.

HAVE_LIBXML2, LIBXML2_DIR If HAVE_LIBXML2 is set to 1, YAZ is compiled with SRU support.
In this configuration, set LIBXML2_DIR to the libxml2 source directory.

You can get pre-compiled Libxml2+Libxslt DLLs and headers from here. Should you with to compile
those libraries yourself, refer to to Section 2.3.3

HAVE_LIBXSLT, LIBXSLT_DIR If HAVE_LIBXSLT is set to 1, YAZ is compiled with XSLT support.
In this configuration, set LIBXSLT_DIR to the libxslt source directory.

http://ftp.indexdata.com/pub/yaz/win32/
http://ftp.indexdata.com/pub/yaz/win32/
http://www.visualstudio.com
http://www.tcl.tk/
http://gitforwindows.org
http://ftp.indexdata.dk/pub/support/windows/bison-2.4.1-setup.exe
http://xmlsoft.org/
http://ftp.indexdata.dk/pub/support/windows/
http://xmlsoft.org/XSLT/

YAZ User’s Guide and Reference 11 / 186

Note
libxslt depends on libxml2.

HAVE_ICU, ICU_DIR If HAVE_ICU is set to 1, YAZ is compiled with ICU support. In this configuration,
set ICU_DIR to the ICU source directory.

Pre-compiled ICU libraries for various versions of Visual Studio can be found here or from Index
Data’s Windows support site.

When satisfied with the settings in the makefile, type

nmake

Note
If the nmake command is not found on your system you probably haven’t defined the environment vari-
ables required to use that tool. To fix that, find and run the batch file vcvarsall.bat. You need to run
it from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

If you wish to recompile YAZ - for example if you modify settings in the makefile you can delete object
files, etc by running.

nmake clean

The following files are generated upon successful compilation:

bin/yaz5.dll / bin/yaz5d.dll YAZ Release/Debug DLL.

lib/yaz5.lib / lib/yaz5d.lib Import library for yaz5.dll / yaz5d.dll.

bin/yaz_cond5.dll / bin/yaz_cond5d.dll Release/Debug DLL for condition variable utilities
(condvar.c).

lib/yaz_cond5.lib / lib/yaz_cond5d.lib Import library for yaz_cond5.dll / yaz_cond5d.
dll.

bin/yaz_icu5.dll / bin/yaz_icu5d.dll Release/Debug DLL for the ICU wrapper utility. Only
build if HAVE_ICU is 1.

lib/yaz_icu5.lib / lib/yaz_icu5d.lib Import library for yaz_icu5.dll / yaz_icu5d.
dll.

bin/yaz-ztest.exe Z39.50 multi-threaded test/example server. It’s a WIN32 console application.

bin/yaz-client.exe YAZ Z39.50 client application. It’s a WIN32 console application. See chapter
YAZ client for more information.

bin/yaz-icu.exe This program exposes the ICU wrapper library if that is enabled for YAZ. Only if
ICU is available this program is built.

http://www.icu-project.org/
http://www.icu-project.org/
http://www.npcglib.org/~stathis/blog/precompiled-icu/
http://ftp.indexdata.dk/pub/support/windows/

bin/zoomsh.exe Simple console application implemented on top of the ZOOM functions. The ap-
plication is a command line shell that allows you to enter simple commands to perform ZOOM
operations.

bin/zoomtst1.exe, bin/zoomtst2.exe, .. Several small applications that demonstrate the ZOOM
API.

2.3.2 How to make apps using YAZ on Windows

This section will go though the process of linking your Windows applications with YAZ.

Some people are confused by the fact that we use the nmake tool to build YAZ. They think they have to do
that too - in order to make their Windows applications work with YAZ. The good news is that you don’t
have to. You can use the integrated environment of Visual Studio if desired for your own application.

When setting up a project or Makefile you have to set the following:

include path Set it to the include directory of YAZ.

import library yaz5.lib You must link with this library. It’s located in the sub directory lib of YAZ.
If you want to link with the debug version of YAZ, you must link against yaz5d.lib instead.

dynamic link library yaz5.dll This DLL must be in your execution path when you invoke your appli-
cation. Specifically, you should distribute this DLL with your application.

2.3.3 Compiling Libxml2 and Libxslt on windows

Download libxml2 and Libxslt source and unpack it. In the example below we install Libxml2 2.9.2 and
Libxslt 1.1.28 for 32-bit, so we use the destination directories libxml2.2.9.2.win32 and libxslt-1.1.28.win32
to reflect both version and architecture.

cd win32
cscript configure.js prefix=c:\libxml2-2.9.2.win32 iconv=no
nmake
nmake install

Note
There’s an error in configure.js for Libxml2 2.9.2. Line 17 should be assigned to configure.ac
rather than configure.in.

For Libxslt it is similar. We must ensure that compilation of Libxslt links against the already installed
libxml2.

cd win32
cscript configure.js prefix=c:\libxslt-1.1.28.win32 iconv=no \

lib=c:\libxml2-2.9.2.win32\lib \
include=c:\libxml2-2.9.2.win32\include\libxml2

nmake
nmake install

YAZ User’s Guide and Reference 13 / 186

Chapter 3

ZOOM

ZOOM is an acronym for ’Z39.50 Object-Orientation Model’ and is an initiative started by Mike Taylor
(Mike is from the UK, which explains the peculiar name of the model). The goal of ZOOM is to provide a
common Z39.50 client API not bound to a particular programming language or toolkit.

From YAZ version 2.1.12, SRU is supported. You can make SRU ZOOM connections by specifying scheme
http:// for the hostname for a connection. The dialect of SRU used is specified by the value of the
connection’s sru option, which may be SRU over HTTP GET (get), SRU over HTTP POST (post),
(SRU over SOAP) (soap) or solr (Solr Web Service). Using the facility for embedding options in target
strings, a connection can be forced to use SRU rather the SRW (the default) by prefixing the target string
with sru=get,, like this: sru=get,http://sru.miketaylor.org.uk:80/sru.pl

Solr protocol support was added to YAZ in version 4.1.0, as a dialect of a SRU protocol, since both are
HTTP based protocols.

The lack of a simple Z39.50 client API for YAZ has become more and more apparent over time. So when
the first ZOOM specification became available, an implementation for YAZ was quickly developed. For
the first time, it is now as easy (or easier!) to develop clients as it is to develop servers with YAZ. This
chapter describes the ZOOM C binding. Before going further, please reconsider whether C is the right
programming language for the job. There are other language bindings available for YAZ, and still more are
in active development. See the ZOOM web-site for more information.

In order to fully understand this chapter you should read and try the example programs zoomtst1.c,
zoomtst2.c, .. in the zoom directory.

The C language misses features found in object oriented languages such as C++, Java, etc. For example,
you’ll have to manually, destroy all objects you create, even though you may think of them as temporary.
Most objects have a _create - and a _destroy variant. All objects are in fact pointers to internal stuff,
but you don’t see that because of typedefs. All destroy methods should gracefully ignore a NULL pointer.

In each of the sections below you’ll find a sub section called protocol behavior, that describes how the API
maps to the Z39.50 protocol.

3.1 Connections

The Connection object is a session with a target.

https://www.loc.gov/standards/sru/
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
http://zoom.z3950.org/

#include <yaz/zoom.h>

ZOOM_connection ZOOM_connection_new(const char *host, int portnum);

ZOOM_connection ZOOM_connection_create(ZOOM_options options);

void ZOOM_connection_connect(ZOOM_connection c, const char *host,
int portnum);

void ZOOM_connection_destroy(ZOOM_connection c);

Connection objects are created with either function ZOOM_connection_new or ZOOM_connection_create.
The former creates and automatically attempts to establish a network connection with the target. The latter
doesn’t establish a connection immediately, thus allowing you to specify options before establishing net-
work connection using the function ZOOM_connection_connect. If the port number, portnum, is
zero, the host is consulted for a port specification. If no port is given, 210 is used. A colon denotes the
beginning of a port number in the host string. If the host string includes a slash, the following part specifies
a database for the connection.

You can prefix the host with a scheme followed by colon. The default scheme is tcp (Z39.50 protocol).
The scheme http selects SRU/SOAP over HTTP by default, but can be changed with option sru.

You can prefix the scheme-qualified host-string with one or more comma-separated key=value sequences,
each of which represents an option to be set into the connection structure before the protocol-level connec-
tion is forged and the initialization handshake takes place. This facility can be used to provide authentication
credentials, as in host-strings such as: user=admin,password=halfAm4n,tcp:localhost:8017/db

Connection objects should be destroyed using the function ZOOM_connection_destroy.

void ZOOM_connection_option_set(ZOOM_connection c,
const char *key, const char *val);

void ZOOM_connection_option_setl(ZOOM_connection c,
const char *key,
const char *val, int len);

const char *ZOOM_connection_option_get(ZOOM_connection c,
const char *key);

const char *ZOOM_connection_option_getl(ZOOM_connection c,
const char *key,
int *lenp);

The functions ZOOM_connection_option_set and ZOOM_connection_option_setl allows
you to set an option given by key to the value value for the connection. For ZOOM_connection_option_set,
the value is assumed to be a 0-terminated string. Function ZOOM_connection_option_setl speci-
fies a value of a certain size (len).

Functions ZOOM_connection_option_get and ZOOM_connection_option_getl returns the
value for an option given by key .

YAZ User’s Guide and Reference 15 / 186

Option Description Default
implementationName Name of your client none
user Authentication user name none
group Authentication group name none
password Authentication password. none
authenticationMode How authentication is encoded. basic

host
Target host. This setting is "read-only". It’s
automatically set internally when connecting to
a target.

none

proxy
Proxy host. If set, the logical host is encoded in
the otherInfo area of the Z39.50 Init PDU with
OID 1.2.840.10003.10.1000.81.1.

none

clientIP

Client IP. If set, is encoded in the otherInfo area
of a Z39.50 PDU with OID
1.2.840.10003.10.1000.81.3. Holds the original
IP addresses of a client. Is used if ZOOM is
used in a gateway of some sort.

none

timeout

Idle timeout which specifies how long ZOOM
will wait for network I/O before giving up.
Thus, the actual waiting time might be longer
than this value if the target makes a chunked
response and the time between each chunk
arrive is less this value. For the connect+init,
this is the time ZOOM will wait until receiving
first byte from Init response.

30

async
If true (1) the connection operates in
asynchronous operation which means that all
calls are non-blocking except ZOOM_event.

0

maximumRecordSize Maximum size of single record. 1 MB
preferredMessageSize Maximum size of multiple records. 1 MB
lang Language for negotiation. none
charset Character set for negotiation. none

rpnCharset

Client-side character conversion for RPN
queries and scan terms. The input terms are
converted from UTF-8 to the character set of
rpnCharset.

none (no
conversion)

serverImplementationId
Implementation ID of server. (The old
targetImplementationId option is also supported
for the benefit of old applications.)

none

targetImplementationName
Implementation Name of server. (The old
targetImplementationName option is also
supported for the benefit of old applications.)

none

serverImplementationVersion
Implementation Version of server. (The old
targetImplementationVersion option is also
supported for the benefit of old applications.)

none

databaseName
One or more database names separated by
character plus (+), which is to be used by
subsequent search requests on this Connection.

Default

piggyback
True (1) if piggyback should be used in
searches; false (0) if not.

1

smallSetUpperBound
If hits is less than or equal to this value, then
target will return all records using small element
set name

0

largeSetLowerBound
If hits is greater than this value, the target will
return no records.

1

mediumSetPresentNumber

This value represents the number of records to
be returned as part of a search when hits is less
than or equal to large set lower bound and if hits
is greater than small set upper bound.

0

smallSetElementSetName
The element set name to be used for small result
sets.

none

mediumSetElementSetName
The element set name to be used for
medium-sized result sets.

none

init_opt_search,
init_opt_present,
init_opt_delSet, etc.

After a successful Init, these options may be
interrogated to discover whether the server
claims to support the specified operations.

none

sru
SRU/Solr transport type. Must be either soap,
get, post, or solr.

soap if scheme is
already http;
ignored otherwise

sru_version

SRU/SRW version. Should be 1.1, or 1.2.
This is, prior to connect, the version to offer
(highest version). And following connect (in
fact first operation), holds the negotiated version
with the server (same or lower version).

1.2

extraArgs
Extra arguments for SRU/Solr URLs. The value
must be URL encoded already.

facets

Requested or recommended facets may be given
before a search is sent. The value of this setting
is described in Section 7.8 For inspection of the
facets returned, refer to the functions described
in Section 3.5.

none

apdulog

If set to a true value such as "1", a log of
low-level protocol packets is emitted on
standard error stream. This can be very useful
for debugging.

0

saveAPDU

If set to a true value such as "1", a log of
low-level protocol packets is saved. The log can
be retrieved by reading option APDU. Setting
saveAPDU always has the side effect of
resetting the currently saved log. This setting is
write-only. If read, NULL will be returned. It is
only recognized in
ZOOM_connection_option_set.

0

APDU

Returns the log of protocol packets. Will be
empty if logging is not enabled (see saveAPDU
above). This setting is read-only. It is only
recognized if used in call to
ZOOM_connection_option_get or
ZOOM_connection_option_getl.

memcached

If given and non-empty, libMemcached will be
configured for the connection. This option is
inspected by ZOOM when a connection is
established. If the memcached option is given
and YAZ is compiled without libMemcached
support, an internal diagnostic (10018) will be
thrown. libMemcached support is available for
YAZ 5.0.13 or later. If this option is supplied
for an earlier version of YAZ, it is ignored. The
value of this option is a list options - each is of
the form --name=value. Option
--server=host[:port] specifies a memcached
server. It may be repeated for multiple
memcached servers. Option
--expire=seconds sets expiry time in
seconds for how long result sets are to be
cached.

none

redis

If given and non-empty, a redis context will be
created for the connection. This option is
inspected by ZOOM when a connection is
established. If the redis option is given and
YAZ is compiled without redis support, an
internal diagnostic (10018) will be thrown. redis
support is available for YAZ 5.2.0 or later. If
this option is supplied for an earlier version of
YAZ, it is ignored. The value of this option is a
set of options, similar to that of the memcached
setting. At this stage only --server=host[:port]
and --expire=seconds are supported.

none

Table 3.1: ZOOM Connection Options

https://libmemcached.org/
https://redis.io/

If either option lang or charset is set, then Character Set and Language Negotiation is in effect.

int ZOOM_connection_error(ZOOM_connection c, const char **cp,
const char **addinfo);

int ZOOM_connection_error_x(ZOOM_connection c, const char **cp,
const char **addinfo, const char **dset);

Function ZOOM_connection_error checks for errors for the last operation(s) performed. The function
returns zero if no errors occurred; non-zero otherwise indicating the error. Pointers cp and addinfo holds
messages for the error and additional-info if passed as non-NULL. Function ZOOM_connection_error_x
is an extended version of ZOOM_connection_error that is capable of returning name of diagnostic set
in dset.

3.1.1 Z39.50 Protocol behavior

The calls ZOOM_connection_new and ZOOM_connection_connect establishes a TCP/IP con-
nection and sends an Initialize Request to the target if possible. In addition, the calls wait for an Initialize
Response from the target and the result is inspected (OK or rejected).

If proxy is set then the client will establish a TCP/IP connection with the peer as specified by the proxy
host and the hostname as part of the connect calls will be set as part of the Initialize Request. The proxy
server will then "forward" the PDUs transparently to the target behind the proxy.

For the authentication parameters, if option user is set and both options group and pass are unset, then
Open style authentication is used (Version 2/3) in which case the username is usually followed by a slash,
then by a password. If either group or pass is set then idPass authentication (Version 3 only) is used. If
none of the options are set, no authentication parameters are set as part of the Initialize Request (obviously).

When option async is 1, it really means that all network operations are postponed (and queued) until
the function ZOOM_event is invoked. When doing so it doesn’t make sense to check for errors after
ZOOM_connection_new is called since that operation "connecting - and init" is still incomplete and the
API cannot tell the outcome (yet).

3.1.2 SRU/Solr Protocol behavior

The HTTP based protocols (SRU, SRW, Solr) do not feature an Inititialize Request, so the connection phase
merely establishes a TCP/IP connection with the HTTP server.

Most of the ZOOM connection options do not affect SRU/Solr and they are ignored. However, future
versions of YAZ might honor implementationName and put that as part of User-Agent header for
HTTP requests.

The charset is used in the Content-Type header of HTTP requests.

Setting authentcationMode specifies how authentication parameters are encoded for HTTP. The de-
fault is "basic" where user and password are encoded by using HTTP basic authentication.

If authentcationMode is "url", then user and password are encoded in the URL by parameters
x-username and x-password as given by the SRU standard.

https://www.loc.gov/z3950/agency/defns/charneg-3.html

YAZ User’s Guide and Reference 17 / 186

3.2 Queries

Query objects represents queries.

ZOOM_query ZOOM_query_create(void);

void ZOOM_query_destroy(ZOOM_query q);

int ZOOM_query_prefix(ZOOM_query q, const char *str);

int ZOOM_query_cql(ZOOM_query s, const char *str);

int ZOOM_query_sortby(ZOOM_query q, const char *criteria);

int ZOOM_query_sortby2(ZOOM_query q, const char *strategy,
const char *criteria);

Create query objects using ZOOM_query_create and destroy them by calling ZOOM_query_destroy.
RPN-queries can be specified in PQF notation by using the function ZOOM_query_prefix. The ZOOM_query_cql
specifies a CQL query to be sent to the server/target. More query types will be added in future versions
of YAZ, such as CCL to RPN-mapping, native CCL query, etc. In addition to a search, a sort criteria may
be set. Function ZOOM_query_sortby enables Z39.50 sorting and it takes sort criteria using the same
string notation as yaz-client’s sort command.

ZOOM_query_sortby2 is similar to ZOOM_query_sortby but allows a strategy for sorting. The
reason for the strategy parameter is that some protocols offer multiple ways of performing sorting. For
example, Z39.50 has the standard sort, which is performed after search on an existing result set. It’s also
possible to use CQL in Z39.50 as the query type and use CQL’s SORTBY keyword. Finally, Index Data’s
Zebra server also allows sorting to be specified as part of RPN (Type 7).

Name Description
z39.50 Z39.50 resultset sort
type7 Sorting embedded in RPN(Type-7)
cql CQL SORTBY
sru11 SRU sortKeys parameter
solr Solr sort
embed type7 for Z39.50, cql for SRU, solr for Solr protocol

Table 3.2: ZOOM sort strategy

3.3 Result sets

The result set object is a container for records returned from a target.

ZOOM_resultset ZOOM_connection_search(ZOOM_connection, ZOOM_query q);

ZOOM_resultset ZOOM_connection_search_pqf(ZOOM_connection c,
const char *q);

void ZOOM_resultset_destroy(ZOOM_resultset r);

Function ZOOM_connection_search creates a result set, given a connection and query. Destroy a
result set by calling ZOOM_resultset_destroy. Simple clients using PQF only, may use the function
ZOOM_connection_search_pqf in which case creating query objects is not necessary.

void ZOOM_resultset_option_set(ZOOM_resultset r,
const char *key, const char *val);

const char *ZOOM_resultset_option_get(ZOOM_resultset r, const char *key);

size_t ZOOM_resultset_size(ZOOM_resultset r);

Functions ZOOM_resultset_options_set and ZOOM_resultset_get sets and gets an option
for a result set similar to ZOOM_connection_option_get and ZOOM_connection_option_set.

The number of hits, also called result-count, is returned by function ZOOM_resultset_size.

For servers that support Search Info report, the following options may be read using ZOOM_resultset_get.
This detailed information is read after a successful search has completed.

This information is a list of of items, where each item is information about a term or subquery. All items in
the list are prefixed by SearchResult.no where no presents the item number (0=first, 1=second). Read
searchresult.size to determine the number of items.

3.3.1 Z39.50 Result-set Sort

void ZOOM_resultset_sort(ZOOM_resultset r,
const char *sort_type, const char *sort_spec);

int ZOOM_resultset_sort1(ZOOM_resultset r,
const char *sort_type, const char *sort_spec);

ZOOM_resultset_sort and ZOOM_resultset_sort1 both sort an existing result-set. The sort_type
parameter is not used. Set it to "yaz". The sort_spec is same notation as ZOOM_query_sortby and identical
to that offered by yaz-client’s sort command.

These functions only work for Z39.50. Use the more generic utility ZOOM_query_sortby2 for other proto-
cols (and even Z39.50).

YAZ User’s Guide and Reference 19 / 186

Option Description Default

start

Offset of first record to be retrieved from target.
First record has offset 0 unlike the protocol
specifications where first record has position 1. This
option affects ZOOM_resultset_search and
ZOOM_resultset_search_pqf and must be set
before any of these functions are invoked. If a range
of records must be fetched manually after search,
function ZOOM_resultset_records should be used.

0

count

Number of records to be retrieved. This option
affects ZOOM_resultset_search and
ZOOM_resultset_search_pqf and must be set
before any of these functions are invoked.

0

presentChunk

The number of records to be requested from the
server in each chunk (present request). The value 0
means to request all the records in a single chunk.
(The old step option is also supported for the
benefit of old applications.)

0

elementSetName
Element-Set name of records. Most targets should
honor element set name B and F for brief and full
respectively.

none

preferredRecordSyntax Preferred Syntax, such as USMARC, SUTRS, etc. none

schema
Schema for retrieval, such as Gils-schema,
Geo-schema, etc.

none

setname
Name of Result Set (Result Set ID). If this option
isn’t set, the ZOOM module will automatically
allocate a result set name.

default

rpnCharset

Character set for RPN terms. If this is set, ZOOM C
will assume that the ZOOM application is running
UTF-8. Terms in RPN queries are then converted to
the rpnCharset. If this is unset, ZOOM C will not
assume any encoding of RPN terms and no
conversion is performed.

none

Table 3.3: ZOOM Result set Options

Option Description

searchresult.size
number of search result entries. This option is non-existent if
no entries are returned by the server.

searchresult.no.id sub query ID
searchresult.no.count result count for item (number of hits)
searchresult.no.subquery.term subquery term
searchresult.no.interpretation.term interpretation term
searchresult.no.recommendation.term recommendation term

Table 3.4: Search Info Report Options

3.3.2 Z39.50 Protocol behavior

The creation of a result set involves at least a SearchRequest - SearchResponse protocol handshake. Follow-
ing that, if a sort criteria was specified as part of the query, a SortRequest - SortResponse handshake takes
place. Note that it is necessary to perform sorting before any retrieval takes place, so no records will be
returned from the target as part of the SearchResponse because these would be unsorted. Hence, piggyback
is disabled when sort criteria are set. Following Search - and a possible sort - Retrieval takes place - as one
or more Present Requests/Response pairs being transferred.

The API allows for two different modes for retrieval. A high level mode which is somewhat more powerful
and a low level one. The low level is enabled when searching on a Connection object for which the settings
smallSetUpperBound, mediumSetPresentNumber and largeSetLowerBound are set. The
low level mode thus allows you to precisely set how records are returned as part of a search response as
offered by the Z39.50 protocol. Since the client may be retrieving records as part of the search response,
this mode doesn’t work well if sorting is used.

The high-level mode allows you to fetch a range of records from the result set with a given start offset.
When you use this mode the client will automatically use piggyback if that is possible with the target, and
perform one or more present requests as needed. Even if the target returns fewer records as part of a present
response because of a record size limit, etc. the client will repeat sending present requests. As an example,
if option start is 0 (default) and count is 4, and piggyback is 1 (default) and no sorting criteria is
specified, then the client will attempt to retrieve the 4 records as part the search response (using piggyback).
On the other hand, if either start is positive or if a sorting criteria is set, or if piggyback is 0, then the
client will not perform piggyback but send Present Requests instead.

If either of the options mediumSetElementSetName and smallSetElementSetName are unset,
the value of option elementSetName is used for piggyback searches. This means that for the high-level
mode you only have to specify one elementSetName option rather than three.

3.3.3 SRU Protocol behavior

Current version of YAZ does not take advantage of a result set id returned by the SRU server. Future
versions might do, however. Since the ZOOM driver does not save result set IDs, any present (retrieval) is
transformed to a SRU SearchRetrieveRequest with same query but, possibly, different offsets.

Option schema specifies SRU schema for retrieval. However, options elementSetName and preferredRecordSyntax
are ignored.

Options start and count are supported by SRU. The remaining options piggyback, smallSetUpperBound,
largeSetLowerBound, mediumSetPresentNumber, mediumSetElementSetName, smallSetElementSetName
are unsupported.

SRU supports CQL queries, not PQF. If PQF is used, however, the PQF query is transferred anyway using
non-standard element pQuery in SRU SearchRetrieveRequest.

Solr queries need to be done in Solr query format.

Unfortunately, SRU and Solr do not define a database setting. Hence, databaseName is unsupported and
ignored. However, the path part in host parameter for functions ZOOM_connecton_new and ZOOM_connection_connect
acts as a database (at least for the YAZ SRU server).

YAZ User’s Guide and Reference 21 / 186

3.4 Records

A record object is a retrieval record on the client side - created from result sets.

void ZOOM_resultset_records(ZOOM_resultset r,
ZOOM_record *recs,
size_t start, size_t count);

ZOOM_record ZOOM_resultset_record(ZOOM_resultset s, size_t pos);

const char *ZOOM_record_get(ZOOM_record rec, const char *type,
size_t *len);

int ZOOM_record_error(ZOOM_record rec, const char **msg,
const char **addinfo, const char **diagset);

ZOOM_record ZOOM_record_clone(ZOOM_record rec);

void ZOOM_record_destroy(ZOOM_record rec);

References to temporary records are returned by functions ZOOM_resultset_records or ZOOM_resultset_record.

If a persistent reference to a record is desired ZOOM_record_clone should be used. It returns a record
reference that should be destroyed by a call to ZOOM_record_destroy.

A single record is returned by function ZOOM_resultset_record that takes a position as argument.
First record has position zero. If no record could be obtained NULL is returned.

Error information for a record can be checked with ZOOM_record_error which returns non-zero (error
code) if record is in error, called Surrogate Diagnostics in Z39.50.

Function ZOOM_resultset_records retrieves a number of records from a result set. Parameter
start and count specifies the range of records to be returned. Upon completion, the array recs[0],
..recs[count-1] holds record objects for the records. The array of records recs should be allocated
prior the call ZOOM_resultset_records. Note that for those records that couldn’t be retrieved from
the target, recs[..] is set to NULL.

In order to extract information about a single record, ZOOM_record_get is provided. The function
returns a pointer to certain record information. The nature (type) of the pointer depends on the parameter,
type.

The type is a string of the format:

format[;charset=from[/opacfrom][,to]][;format=v][;base64=xpath]

If charset is given, then from specifies the character set of the record in its original form (as returned
by the server), to specifies the output (returned) character set encoding. If to is omitted, then UTF-8
is assumed. If charset is not given, then no character set conversion takes place. OPAC records may be
returned in a different set from the bibliographic MARC record. If this is this the case, opacfrom should
be set to the character set of the OPAC record part.

The format is generic but can only be used to specify XML indentation when the value v is 1 (format=1).

The base64 allows a full record to be extracted from base64-encoded string in an XML document.

Note
Specifying the OPAC record character set requires YAZ 4.1.5 or later.
Specifying the base64 parameter requires YAZ 4.2.35 or later.

The format argument controls whether record data should be XML pretty-printed (post process operation).
It is enabled only if format value v is 1 and the record content is XML well-formed.

In addition, for certain types, the length len passed will be set to the size in bytes of the returned informa-
tion.

The following are the supported values for form.

database The Database of the record is returned as a C null-terminated string. Return type const
char *.

syntax The transfer syntax of the record is returned as a C null-terminated string containing the symbolic
name of the record syntax, e.g. Usmarc. Return type is const char *.

schema The schema of the record is returned as a C null-terminated string. Return type is const char

*.

render The record is returned in a display friendly format. Upon completion, buffer is returned (type
const char *) and length is stored in *len.

raw The record is returned in the internal YAZ specific format. For GRS-1, Explain, and others, the raw
data is returned as type Z_External *which is just the type for the member retrievalRecord
in type NamePlusRecord. For SUTRS and octet aligned record (including all MARCs) the octet
buffer is returned and the length of the buffer.

xml The record is returned in XML if possible. SRU, Solr and Z39.50 records with transfer syntax XML
are returned verbatim. MARC records are returned in MARCXML (converted from ISO2709 to
MARCXML by YAZ). OPAC records are also converted to XML and the bibliographic record is
converted to MARCXML (when possible). GRS-1 records are not supported for this form. Upon
completion, the XML buffer is returned (type const char *) and length is stored in *len.

opac OPAC information for record is returned in XML if an OPAC record is present at the position given.
If no OPAC record is present, a NULL pointer is returned.

txml The record is returned in TurboMARC if possible. SRU and Z39.50 records with transfer syntax
XML are returned verbatim. MARC records are returned in TurboMARC (converted from ISO2709
to TurboMARC by YAZ). Upon completion, the XML buffer is returned (type const char *)
and length is stored in *len.

json Like xml, but MARC records are converted to MARC-in-JSON.

Most MARC21 records uses the MARC-8 character set encoding. An application that wishes to display in
Latin-1 would use

render; charset=marc8,iso-8859-1

https://www.loc.gov/standards/marcxml/
https://rossfsinger.com/blog/2010/09/a-proposal-to-serialize-marc-in-json/
https://www.loc.gov/marc/
https://www.loc.gov/marc/specifications/speccharmarc8.html

YAZ User’s Guide and Reference 23 / 186

3.4.1 Z39.50 Protocol behavior

The functions ZOOM_resultset_record and ZOOM_resultset_records inspects the client-side
record cache. Records not found in cache are fetched using Present. The functions may block (and perform
network I/O) - even though option async is 1, because they return records objects. (And there’s no way to
return records objects without retrieving them!)

There is a trick, however, in the usage of function ZOOM_resultset_records that allows for delayed
retrieval (and makes it non-blocking). By using a null pointer for recs you’re indicating you’re not inter-
ested in getting records objects now.

3.4.2 SRU/Solr Protocol behavior

The ZOOM driver for SRU/Solr treats records returned by a SRU/Solr server as if they where Z39.50
records with transfer syntax XML and no element set name or database name.

3.5 ZOOM Facets

Facets are only supported for a few Z39.50 targets. It is a relatively new non-standard Z39.50 extension
(see facets.asn in the YAZ source). However, facets are usually supported for Solr and SRU 2.0 targets.

Facets may be specified by the facets option before a search is sent. See Section 7.8 for the notation. For
inspection of the returned facets, the following functions are available:

ZOOM_facet_field *ZOOM_resultset_facets(ZOOM_resultset r);

size_t ZOOM_resultset_facets_size(ZOOM_resultset r);

ZOOM_facet_field ZOOM_resultset_get_facet_field(ZOOM_resultset r,
const char *facet_name);

ZOOM_facet_field ZOOM_resultset_get_facet_field_by_index(ZOOM_resultset r,
int pos);

const char *ZOOM_facet_field_name(ZOOM_facet_field facet_field);

size_t ZOOM_facet_field_term_count(ZOOM_facet_field facet_field);

const char *ZOOM_facet_field_get_term(ZOOM_facet_field facet_field,
size_t idx, int *freq);

References to temporary structures are returned by all functions. They are only valid as long the Result set
is valid.

All facet fields may be returned by a call to ZOOM_resultset_facets. The length of the array is

https://lucene.apache.org/solr/

given by ZOOM_resultset_facets_size. The array is zero-based and the last entry will be at
ZOOM_resultset_facets_size(result_set)-1.

Facet fields can also be fetched via its name using ZOOM_resultset_get_facet_field. Or by
its index (starting from 0) by a call to ZOOM_resultset_get_facet_field_by_index. Both of
these functions return NULL if name is not found or index is out of bounds.

Function ZOOM_facet_field_name gets the request facet name from a returned facet field.

Function ZOOM_facet_field_get_term returns the idx’th term and term count for a facet field. Idx
must between 0 and ZOOM_facet_field_term_count-1, otherwise the returned reference will be
NULL. On a valid idx, the value of the freq reference will be the term count. The freq parameter must be
valid pointer to integer.

3.6 Scan

This section describes an interface for Scan. Scan is not an official part of the ZOOM model yet. The result
of a scan operation is the ZOOM_scanset which is a set of terms returned by a target.

The Scan interface is supported for both Z39.50, SRU and Solr.

ZOOM_scanset ZOOM_connection_scan(ZOOM_connection c,
const char *startpqf);

ZOOM_scanset ZOOM_connection_scan1(ZOOM_connection c,
ZOOM_query q);

size_t ZOOM_scanset_size(ZOOM_scanset scan);

const char *ZOOM_scanset_term(ZOOM_scanset scan, size_t pos,
size_t *occ, size_t *len);

const char *ZOOM_scanset_display_term(ZOOM_scanset scan, size_t pos,
size_t *occ, size_t *len);

void ZOOM_scanset_destroy(ZOOM_scanset scan);

const char *ZOOM_scanset_option_get(ZOOM_scanset scan,
const char *key);

void ZOOM_scanset_option_set(ZOOM_scanset scan, const char *key,
const char *val);

The scan set is created by function ZOOM_connection_scan which performs a scan operation on the
connection using the specified startpqf. If the operation was successful, the size of the scan set can
be retrieved by a call to ZOOM_scanset_size. Like result sets, the items are numbered 0..size-1.

YAZ User’s Guide and Reference 25 / 186

To obtain information about a particular scan term, call function ZOOM_scanset_term. This func-
tion takes a scan set offset pos and returns a pointer to a raw term or NULL if non-present. If present,
the occ and len are set to the number of occurrences and the length of the actual term respectively.
ZOOM_scanset_display_term is similar to ZOOM_scanset_term except that it returns the dis-
play term rather than the raw term. In a few cases, the term is different from display term. Always use
the display term for display and the raw term for subsequent scan operations (to get more terms, next scan
result, etc).

A scan set may be freed by a call to function ZOOM_scanset_destroy. Functions ZOOM_scanset_option_get
and ZOOM_scanset_option_set retrieves and sets an option respectively.

The startpqf is a subset of PQF, namely the Attributes+Term part. Multiple @attr can be used. For
example to scan in title (complete) phrases:

@attr 1=4 @attr 6=2 "science o"

The ZOOM_connecton_scan1 is a newer and more generic alternative to ZOOM_connection_scan
which allows to use both CQL and PQF for Scan.

Option Description Default

number
Number of Scan Terms requested in next scan.
After scan it holds the actual number of terms
returned.

20

position
Preferred Position of term in response in next scan;
actual position after completion of scan.

1

stepSize Step Size 0
scanStatus An integer indicating the Scan Status of last scan. 0

rpnCharset

Character set for RPN terms. If this is set, ZOOM C
will assume that the ZOOM application is running
UTF-8. Terms in RPN queries are then converted to
the rpnCharset. If this is unset, ZOOM C will not
assume any encoding of RPN terms and no
conversion is performed.

none

Table 3.5: ZOOM Scan Set Options

3.7 Extended Services

ZOOM offers an interface to a subset of the Z39.50 extended services as well as a few privately defined
ones:

• Z39.50 Item Order (ILL). See Section 3.7.1.

• Record Update. This allows a client to insert, modify or delete records. See Section 3.7.2.

• Database Create. This a non-standard feature. Allows a client to create a database. See Section 3.7.3.

• Database Drop. This a non-standard feature. Allows a client to delete/drop a database. See Section 3.7.4.

• Commit operation. This a non-standard feature. Allows a client to commit operations. See Section 3.7.5.

To create an extended service operation, a ZOOM_package must be created. The operation is a five step
operation. The package is created, package is configured by means of options, the package is sent, result is
inspected (by means of options), the package is destroyed.

ZOOM_package ZOOM_connection_package(ZOOM_connection c,
ZOOM_options options);

const char *ZOOM_package_option_get(ZOOM_package p,
const char *key);

void ZOOM_package_option_set(ZOOM_package p, const char *key,
const char *val);

void ZOOM_package_send(ZOOM_package p, const char *type);

void ZOOM_package_destroy(ZOOM_package p);

The ZOOM_connection_package creates a package for the connection given using the options speci-
fied.

Functions ZOOM_package_option_get and ZOOM_package_option_set gets and sets options.

ZOOM_package_send sends the package the via connection specified in ZOOM_connection_package.
The type specifies the actual extended service package type to be sent.

Type Description
itemorder Item Order
update Record Update
create Database Create
drop Database Drop
commit Commit Operation

Table 3.6: Extended Service Type

3.7.1 Item Order

For Item Order, type must be set to itemorder in ZOOM_package_send.

There are two variants of item order: ILL-variant and XML document variant. In order to use the XML
variant the setting doc must hold the XML item order document. If that setting is unset, the ILL-variant is
used.

3.7.2 Record Update

For Record Update, type must be set to update in ZOOM_package_send.

YAZ User’s Guide and Reference 27 / 186

Option Description Default

package-name
Extended Service Request package name. Must
be specified as part of a request.

none

user-id
User ID of Extended Service Package. Is a
request option.

none

function
Function of package - one of create,
delete, modify. Is a request option.

create

waitAction
Wait action for package. Possible values:
wait, waitIfPossible, dontWait or
dontReturnPackage.

waitIfPossible

operationStatus
Read after response. One of: done, accepted or
failure. Inspect with
ZOOM_pacakage_option_get.

none

targetReference

Target Reference. This is part of the response as
returned by the target. Read it after a successful
operation. Inspect with
ZOOM_pacakage_option_get.

none

taskStatus
Read after response: One of: pending, active,
complete, aborted.

none

esError
Read after response: is set to diagnostic code
for response.

none

esAddinfo
Read after response: is set to additional info for
response.

none

Table 3.7: Extended Service Common Options

Option Description Default
contact-name ILL contact name none
contact-phone ILL contact phone none
contact-email ILL contact email none
itemorder-setname Name of result set for record default
itemorder-item Position for item (record) requested. An integer 1

Table 3.8: Item Order Options

Option
protocol-version-num
transaction-id,initial-requester-id,person-or-institution-symbol,person
transaction-id,initial-requester-id,person-or-institution-symbol,institution
transaction-id,initial-requester-id,name-of-person-or-institution,name-of-person
transaction-id,initial-requester-id,name-of-person-or-institution,name-of-institution
transaction-id,transaction-group-qualifier
transaction-id,transaction-qualifier
transaction-id,sub-transaction-qualifier
service-date-time,this,date
service-date-time,this,time
service-date-time,original,date
service-date-time,original,time
requester-id,person-or-institution-symbol,person
requester-id,person-or-institution-symbol,institution
requester-id,name-of-person-or-institution,name-of-person
requester-id,name-of-person-or-institution,name-of-institution
responder-id,person-or-institution-symbol,person
responder-id,person-or-institution-symbol,institution
responder-id,name-of-person-or-institution,name-of-person
responder-id,name-of-person-or-institution,name-of-institution
transaction-type
delivery-address,postal-address,name-of-person-or-institution,name-of-person
delivery-address,postal-address,name-of-person-or-institution,name-of-institution
delivery-address,postal-address,extended-postal-delivery-address
delivery-address,postal-address,street-and-number
delivery-address,postal-address,post-office-box
delivery-address,postal-address,city
delivery-address,postal-address,region
delivery-address,postal-address,country
delivery-address,postal-address,postal-code
delivery-address,electronic-address,telecom-service-identifier
delivery-address,electronic-address,telecom-service-addreess
billing-address,postal-address,name-of-person-or-institution,name-of-person
billing-address,postal-address,name-of-person-or-institution,name-of-institution
billing-address,postal-address,extended-postal-delivery-address
billing-address,postal-address,street-and-number
billing-address,postal-address,post-office-box
billing-address,postal-address,city
billing-address,postal-address,region
billing-address,postal-address,country
billing-address,postal-address,postal-code
billing-address,electronic-address,telecom-service-identifier
billing-address,electronic-address,telecom-service-addreess
ill-service-type
requester-optional-messages,can-send-RECEIVED
requester-optional-messages,can-send-RETURNED
requester-optional-messages,requester-SHIPPED
requester-optional-messages,requester-CHECKED-IN
search-type,level-of-service
search-type,need-before-date
search-type,expiry-date
search-type,expiry-flag
place-on-hold
client-id,client-name
client-id,client-status
client-id,client-identifier
item-id,item-type
item-id,call-number
item-id,author
item-id,title
item-id,sub-title
item-id,sponsoring-body
item-id,place-of-publication
item-id,publisher
item-id,series-title-number
item-id,volume-issue
item-id,edition
item-id,publication-date
item-id,publication-date-of-component
item-id,author-of-article
item-id,title-of-article
item-id,pagination
item-id,ISBN
item-id,ISSN
item-id,additional-no-letters
item-id,verification-reference-source
copyright-complicance
retry-flag
forward-flag
requester-note
forward-note

Table 3.9: ILL Request Options

YAZ User’s Guide and Reference 29 / 186

Option Description Default

action
The update action. One of specialUpdate,
recordInsert, recordReplace,
recordDelete, elementUpdate.

specialUpdate
(recordInsert
for
updateVersion=1
which does
not support
specialUpdate)

recordIdOpaque Opaque Record ID none
recordIdNumber Record ID number none
recordIdString Record ID string none
record The record itself none

recordOpaque

Specifies an opaque record which is encoded as
an ASN.1 ANY type with the OID as given by
option syntax (see below). Option
recordOpaque is an alternative to record -
and record option (above) is ignored if
recordOpaque is set. This option is only
available in YAZ 3.0.35 and later, and is meant
to facilitate Updates with servers from OCLC.

none

syntax
The record syntax (transfer syntax). Is a string
that is a known record syntax.

no syntax

databaseName Database from connection object Default
correlationInfo.note Correlation Info Note (string) none
correlationInfo.id Correlation Info ID (integer) none
elementSetName Element Set for Record none

updateVersion

Record Update version which holds one of the
values 1, 2 or 3. Each version has a distinct
OID: 1.2.840.10003.9.5 (first version) ,
1.2.840.10003.9.5.1 (second version) and
1.2.840.10003.9.5.1.1 (third and newest
version).

3

Table 3.10: Record Update Options

https://www.loc.gov/z3950/agency/markup/18.html#auxiliaryStatus4
https://www.loc.gov/z3950/agency/defns/update-es-rev1.html
https://www.loc.gov/z3950/agency/defns/update-es-rev1.html

3.7.3 Database Create

For Database Create, type must be set to create in ZOOM_package_send.

Option Description Default
databaseName Database from connection object Default

Table 3.11: Database Create Options

3.7.4 Database Drop

For Database Drop, type must be set to drop in ZOOM_package_send.

Option Description Default
databaseName Database from connection object Default

Table 3.12: Database Drop Options

3.7.5 Commit Operation

For Commit, type must be set to commit in ZOOM_package_send.

3.7.6 Protocol behavior

All the extended services are Z39.50-only.

Note
The database create, drop, and commit services are privately defined operations. Refer to esadmin.
asn in YAZ for the ASN.1 definitions.

3.8 Options

Most ZOOM objects provide a way to specify options to change behavior. From an implementation point
of view, a set of options is just like an associative array / hash.

ZOOM_options ZOOM_options_create(void);

ZOOM_options ZOOM_options_create_with_parent(ZOOM_options parent);

void ZOOM_options_destroy(ZOOM_options opt);

YAZ User’s Guide and Reference 31 / 186

const char *ZOOM_options_get(ZOOM_options opt, const char *name);

void ZOOM_options_set(ZOOM_options opt, const char *name,
const char *v);

typedef const char *(*ZOOM_options_callback)
(void *handle, const char *name);

ZOOM_options_callback
ZOOM_options_set_callback(ZOOM_options opt,

ZOOM_options_callback c,
void *handle);

3.9 Query conversions

int ZOOM_query_cql2rpn(ZOOM_query s, const char *cql_str,
ZOOM_connection conn);

int ZOOM_query_ccl2rpn(ZOOM_query s, const char *ccl_str,
const char *config,
int *ccl_error, const char **error_string,
int *error_pos);

ZOOM_query_cql2rpn translates the CQL string, client-side, into RPN which may be passed to the
server. This is useful for servers that don’t themselves support CQL, for which ZOOM_query_cql is
useless. ’conn’ is used only as a place to stash diagnostics if compilation fails; if this information is not
needed, a null pointer may be used. The CQL conversion is driven by option cqlfile from connection
conn. This specifies a conversion file (e.g. pqf.properties) which must be present.

ZOOM_query_ccl2rpn translates the CCL string, client-side, into RPN which may be passed to the
server. The conversion is driven by the specification given by config. Upon completion 0 is returned on
success; -1 is returned on failure. On failure error_string and error_pos hold the error message
and position of first error in original CCL string.

3.10 Events

If you’re developing non-blocking applications, you have to deal with events.

int ZOOM_event(int no, ZOOM_connection *cs);

The ZOOM_event executes pending events for a number of connections. Supply the number of connec-
tions in no and an array of connections in cs (cs[0] ... cs[no-1]). A pending event could be
sending a search, receiving a response, etc. When an event has occurred for one of the connections, this
function returns a positive integer n denoting that an event occurred for connection cs[n-1]. When no
events are pending for the connections, a value of zero is returned. To ensure that all outstanding requests
are performed, call this function repeatedly until zero is returned.

If ZOOM_event returns, and returns non-zero, the last event that occurred can be expected.

int ZOOM_connection_last_event(ZOOM_connection cs);

ZOOM_connection_last_event returns an event type (integer) for the last event.

Event Description
ZOOM_EVENT_NONE No event has occurred
ZOOM_EVENT_CONNECT TCP/IP connect has initiated
ZOOM_EVENT_SEND_DATA Data has been transmitted (sending)
ZOOM_EVENT_RECV_DATA Data has been received
ZOOM_EVENT_TIMEOUT Timeout
ZOOM_EVENT_UNKNOWN Unknown event
ZOOM_EVENT_SEND_APDU An APDU has been transmitted (sending)
ZOOM_EVENT_RECV_APDU An APDU has been received
ZOOM_EVENT_RECV_RECORD A result-set record has been received
ZOOM_EVENT_RECV_SEARCH A search result has been received

Table 3.13: ZOOM Event IDs

YAZ User’s Guide and Reference 33 / 186

Chapter 4

Generic server

4.1 Introduction

If you aren’t into documentation, a good way to learn how the back end interface works is to look at the
backend.h file. Then, look at the small dummy-server in ztest/ztest.c. The backend.h file also
makes a good reference, once you’ve chewed your way through the prose of this file.

If you have a database system that you would like to make available by means of Z39.50 or SRU, YAZ
basically offers two options. You can use the APIs provided by the Z39.50 ASN.1, ODR, and COMSTACK
modules to create and decode PDUs, and exchange them with a client. Using this low-level interface
gives you access to all fields and options of the protocol, and you can construct your server as close to
your existing database as you like. It is also a fairly involved process, requiring you to set up an event-
handling mechanism, protocol state machine, etc. To simplify server implementation, we have implemented
a compact and simple, but reasonably full-functioned server-frontend that will handle most of the protocol
mechanics, while leaving you to concentrate on your database interface.

Note
The backend interface was designed in anticipation of a specific integration task, while still attempting
to achieve some degree of generality. We realize fully that there are points where the interface can be
improved significantly. If you have specific functions or parameters that you think could be useful, send us
a mail (or better, sign on to the mailing list referred to in the top-level README file). We will try to fit good
suggestions into future releases, to the extent that it can be done without requiring too many structural
changes in existing applications.

Note
The YAZ server does not support XCQL.

4.2 The Database Frontend

We refer to this software as a generic database frontend. Your database system is the backend database, and
the interface between the two is called the backend API. The backend API consists of a small number of

function handlers and structure definitions. You are required to provide the main() routine for the server
(which can be quite simple), as well as a set of handlers to match each of the prototypes. The interface
functions that you write can use any mechanism you like to communicate with your database system: You
might link the whole thing together with your database application and access it by function calls; you might
use IPC to talk to a database server somewhere; or you might link with third-party software that handles the
communication for you (like a commercial database client library). At any rate, the handlers will perform
the tasks of:

• Initialization.

• Searching.

• Fetching records.

• Scanning the database index (optional - if you wish to implement SCAN).

• Extended Services (optional).

• Result-Set Delete (optional).

• Result-Set Sort (optional).

• Return Explain for SRU (optional).

(more functions will be added in time to support as much of Z39.50-1995 as possible).

4.3 The Backend API

The header file that you need to use the interface are in the include/yaz directory. It’s called backend.
h. It will include other files from the include/yaz directory, so you’ll probably want to use the -I option
of your compiler to tell it where to find the files. When you run make in the top-level YAZ directory,
everything you need to create your server is to link with the lib/libyaz.la library.

4.4 Your main() Routine

As mentioned, your main() routine can be quite brief. If you want to initialize global parameters, or read
global configuration tables, this is the place to do it. At the end of the routine, you should call the function

int statserv_main(int argc, char **argv,
bend_initresult *(*bend_init)(bend_initrequest *r),
void (*bend_close)(void *handle));

YAZ User’s Guide and Reference 35 / 186

The third and fourth arguments are pointers to handlers. Handler bend_init is called whenever the
server receives an Initialize Request, so it serves as a Z39.50 session initializer. The bend_close handler
is called when the session is closed.

statserv_main will establish listening sockets according to the parameters given. When connection
requests are received, the event handler will typically fork() and create a sub-process to handle a new
connection. Alternatively the server may be setup to create threads for each connection. If you do use
global variables and forking, you should be aware, then, that these cannot be shared between associations,
unless you explicitly disable forking by command line parameters.

The server provides a mechanism for controlling some of its behavior without using command-line options.
The function

statserv_options_block *statserv_getcontrol(void);

will return a pointer to a struct statserv_options_block describing the current default settings
of the server. The structure contains these elements:

int dynamic A boolean value, which determines whether the server will fork on each incoming request
(TRUE), or not (FALSE). Default is TRUE. This flag is only read by UNIX-based servers (WIN32-
based servers do not fork).

int threads A boolean value, which determines whether the server will create a thread on each in-
coming request (TRUE), or not (FALSE). Default is FALSE. This flag is only read by UNIX-based
servers that offer POSIX Threads support. WIN32-based servers always operate in threaded mode.

int inetd A boolean value, which determines whether the server will operate under a UNIX INET
daemon (inetd). Default is FALSE.

char logfile[ODR_MAXNAME+1] File for diagnostic output ("": stderr).

char apdufile[ODR_MAXNAME+1] Name of file for logging incoming and outgoing APDUs ("":
don’t log APDUs, "-": stderr).

char default_listen[1024] Same form as the command-line specification of listener address.
"": no default listener address. Default is to listen at "tcp:@:9999". You can only specify one default
listener address in this fashion.

enum oid_proto default_proto; Either PROTO_Z3950 or PROTO_SR. Default is PROTO_Z39_50.

int idle_timeout; Maximum session idle-time, in minutes. Zero indicates no (infinite) timeout.
Default is 15 minutes.

int maxrecordsize; Maximum permissible record (message) size. Default is 64 MB. This amount
of memory will only be allocated if a client requests a very large amount of records in one operation
(or a big record). Set it to a lower number if you are worried about resource consumption on your
host system.

char configname[ODR_MAXNAME+1] Passed to the backend when a new connection is received.

char setuid[ODR_MAXNAME+1] Set user id to the user specified, after binding the listener addresses.

void (*bend_start)(struct statserv_options_block *p) Pointer to function which
is called after the command line options have been parsed - but before the server starts listening. For
forked UNIX servers, this handler is called in the mother process; for threaded servers, this handler
is called in the main thread. The default value of this pointer is NULL in which case it isn’t invoked
by the frontend server. When the server operates as an NT service, this handler is called whenever
the service is started.

void (*bend_stop)(struct statserv_options_block *p) Pointer to function which is
called whenever the server has stopped listening for incoming connections. This function pointer has
a default value of NULL in which case it isn’t called. When the server operates as an NT service, this
handler is called whenever the service is stopped.

void *handle User defined pointer (default value NULL). This is a per-server handle that can be used
to specify "user-data". Do not confuse this with the session-handle as returned by bend_init.

The pointer returned by statserv_getcontrol points to a static area. You are allowed to change the
contents of the structure, but the changes will not take effect until you call

void statserv_setcontrol(statserv_options_block *block);

Note
You should generally update this structure before calling statserv_main().

4.5 The Backend Functions

For each service of the protocol, the backend interface declares one or two functions. You are required to
provide implementations of the functions representing the services that you wish to implement.

4.5.1 Init

bend_initresult (*bend_init)(bend_initrequest *r);

This handler is called once for each new connection request, after a new process/thread has been created,
and an Initialize Request has been received from the client. The pointer to the bend_init handler is
passed in the call to statserv_start.

This handler is also called when operating in SRU mode - when a connection has been made (even though
SRU does not offer this service).

Unlike previous versions of YAZ, the bend_init also serves as a handler that defines the Z39.50 services
that the backend intends to support. Pointers to all service handlers, including search - and fetch must be
specified here in this handler.

The request - and result structures are defined as

YAZ User’s Guide and Reference 37 / 186

typedef struct bend_initrequest
{

/** \brief user/name/password to be read */
Z_IdAuthentication *auth;
/** \brief encoding stream (for results) */
ODR stream;
/** \brief printing stream */
ODR print;
/** \brief decoding stream (use stream for results) */
ODR decode;
/** \brief reference ID */
Z_ReferenceId *referenceId;
/** \brief peer address of client */
char *peer_name;

/** \brief character set and language negotiation

see include/yaz/z-charneg.h

*/
Z_CharSetandLanguageNegotiation *charneg_request;

/** \brief character negotiation response */
Z_External *charneg_response;

/** \brief character set (encoding) for query terms

This is NULL by default. It should be set to the native character
set that the backend assumes for query terms */
char *query_charset;

/** \brief whether query_charset also applies to records

Is 0 (No) by default. Set to 1 (yes) if records is in the same
character set as queries. If in doubt, use 0 (No).

*/
int records_in_same_charset;

char *implementation_id;
char *implementation_name;
char *implementation_version;

/** \brief Z39.50 sort handler */
int (*bend_sort)(void *handle, bend_sort_rr *rr);
/** \brief SRU/Z39.50 search handler */
int (*bend_search)(void *handle, bend_search_rr *rr);
/** \brief SRU/Z39.50 fetch handler */
int (*bend_fetch)(void *handle, bend_fetch_rr *rr);

/** \brief SRU/Z39.50 present handler */
int (*bend_present)(void *handle, bend_present_rr *rr);
/** \brief Z39.50 extended services handler */
int (*bend_esrequest) (void *handle, bend_esrequest_rr *rr);
/** \brief Z39.50 delete result set handler */
int (*bend_delete)(void *handle, bend_delete_rr *rr);
/** \brief Z39.50 scan handler */
int (*bend_scan)(void *handle, bend_scan_rr *rr);
/** \brief Z39.50 segment facility handler */
int (*bend_segment)(void *handle, bend_segment_rr *rr);
/** \brief SRU explain handler */
int (*bend_explain)(void *handle, bend_explain_rr *rr);
/** \brief SRU scan handler */
int (*bend_srw_scan)(void *handle, bend_scan_rr *rr);
/** \brief SRU record update handler */
int (*bend_srw_update)(void *handle, bend_update_rr *rr);

/** \brief whether named result sets are supported (0=disable, 1=enable) */
int named_result_sets;

} bend_initrequest;

typedef struct bend_initresult
{

int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */
void *handle; /* private handle to the backend module */

} bend_initresult;

In general, the server frontend expects that the bend_*result pointer that you return is valid at least
until the next call to a bend_* function. This applies to all of the functions described herein. The
parameter structure passed to you in the call belongs to the server frontend, and you should not make
assumptions about its contents after the current function call has completed. In other words, if you want to
retain any of the contents of a request structure, you should copy them.

The errcode should be zero if the initialization of the backend went well. Any other value will be
interpreted as an error. The errstring isn’t used in the current version, but one option would be to stick
it in the initResponse as a VisibleString. The handle is the most important parameter. It should be set
to some value that uniquely identifies the current session to the backend implementation. It is used by the
frontend server in any future calls to a backend function. The typical use is to set it to point to a dynamically
allocated state structure that is private to your backend module.

The auth member holds the authentication information part of the Z39.50 Initialize Request. Interpret this
if your server requires authentication.

The members peer_name, implementation_id, implementation_name and implementation_version
holds DNS of client, ID of implementor, name of client (Z39.50) implementation - and version.

The bend_ - members are set to NULL when bend_init is called. Modify the pointers by setting them
to point to backend functions.

YAZ User’s Guide and Reference 39 / 186

4.5.2 Search and Retrieve

We now describe the handlers that are required to support search - and retrieve. You must support two
functions - one for search - and one for fetch (retrieval of one record). If desirable you can provide a
third handler which is called when a present request is received which allows you to optimize retrieval of
multiple-records.

int (*bend_search) (void *handle, bend_search_rr *rr);

typedef struct {
char *setname; /* name to give to this set */
int replace_set; /* replace set, if it already exists */
int num_bases; /* number of databases in list */
char **basenames; /* databases to search */
Z_ReferenceId *referenceId;/* reference ID */
Z_Query *query; /* query structure */
ODR stream; /* encode stream */
ODR decode; /* decode stream */
ODR print; /* print stream */

bend_request request;
bend_association association;
int *fd;
int hits; /* number of hits */
int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */
Z_OtherInformation *search_info; /* additional search info */
char *srw_sortKeys; /* holds SRU/SRW sortKeys info */
char *srw_setname; /* holds SRU/SRW generated resultsetID */
int *srw_setnameIdleTime; /* holds SRU/SRW life-time */
int estimated_hit_count; /* if hit count is estimated */
int partial_resultset; /* if result set is partial */

} bend_search_rr;

The bend_search handler is a fairly close approximation of a protocol Z39.50 Search Request - and Re-
sponse PDUs. The setname is the resultSetName from the protocol. You are required to establish a map-
ping between the set name and whatever your backend database likes to use. Similarly, the replace_set
is a boolean value corresponding to the resultSetIndicator field in the protocol. num_bases/basenames
is a length of/array of character pointers to the database names provided by the client. The query is the
full query structure as defined in the protocol ASN.1 specification. It can be either of the possible query
types, and it’s up to you to determine if you can handle the provided query type. Rather than reproduce the
C interface here, we’ll refer you to the structure definitions in the file include/yaz/z-core.h. If you
want to look at the attributeSetId OID of the RPN query, you can either match it against your own internal
tables, or you can use the OID tools.

The structure contains a number of hits, and an errcode/errstring pair. If an error occurs during
the search, or if you’re unhappy with the request, you should set the errcode to a value from the BIB-

1 diagnostic set. The value will then be returned to the user in a nonsurrogate diagnostic record in the
response. The errstring, if provided, will go in the addinfo field. Look at the protocol definition for the
defined error codes, and the suggested uses of the addinfo field.

The bend_search handler is also called when the frontend server receives a SRU SearchRetrieveRequest.
For SRU, a CQL query is usually provided by the client. The CQL query is available as part of Z_Query
structure (note that CQL is now part of Z39.50 via an external). To support CQL in existing implementations
that only do Type-1, we refer to the CQL-to-PQF tool described here.

To maintain backwards compatibility, the frontend server of yaz always assume that error codes are BIB-1
diagnostics. For SRU operation, a Bib-1 diagnostic code is mapped to SRU diagnostic.

int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

typedef struct bend_fetch_rr {
char *setname; /* set name */
int number; /* record number */
Z_ReferenceId *referenceId;/* reference ID */
Odr_oid *request_format; /* format, transfer syntax (OID) */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; /* encoding stream - memory source if req */
ODR print; /* printing stream */

char *basename; /* name of database that provided record */
int len; /* length of record or -1 if structured */
char *record; /* record */
int last_in_set; /* is it? */
Odr_oid *output_format; /* response format/syntax (OID) */
int errcode; /* 0==success */
char *errstring; /* system error string or NULL */
int surrogate_flag; /* surrogate diagnostic */
char *schema; /* string record schema input/output */

} bend_fetch_rr;

The frontend server calls the bend_fetch handler when it needs database records to fulfill a Z39.50
Search Request, a Z39.50 Present Request or a SRU SearchRetrieveRequest. The setname is simply the
name of the result set that holds the reference to the desired record. The number is the offset into the set
(with 1 being the first record in the set). The format field is the record format requested by the client
(See Section 7.2). A value of NULL for format indicates that the client did not request a specific format.
The stream argument is an ODR stream which should be used for allocating space for structured data
records. The stream will be reset when all records have been assembled, and the response package has been
transmitted. For unstructured data, the backend is responsible for maintaining a static or dynamic buffer for
the record between calls.

If a SRU SearchRetrieveRequest is received by the frontend server, the referenceId is NULL and the
format (transfer syntax) is the OID for XML. The schema for SRU is stored in both the Z_RecordComposition
structure and schema (simple string).

YAZ User’s Guide and Reference 41 / 186

In the structure, the basename is the name of the database that holds the record. len is the length of the
record returned, in bytes, and record is a pointer to the record. last_in_set should be nonzero only
if the record returned is the last one in the given result set. errcode and errstring, if given, will be
interpreted as a global error pertaining to the set, and will be returned in a non-surrogate-diagnostic. If you
wish to return the error as a surrogate-diagnostic (local error) you can do this by setting surrogate_flag
to 1 also.

If the len field has the value -1, then record is assumed to point to a constructed data type. The format
field will be used to determine which encoder should be used to serialize the data.

Note
If your backend generates structured records, it should use odr_malloc() on the provided stream for
allocating data: This allows the frontend server to keep track of the record sizes.

The format field is mapped to an object identifier in the direct reference of the resulting EXTERNAL
representation of the record.

Note
The current version of YAZ only supports the direct reference mode.

int (*bend_present) (void *handle, bend_present_rr *rr);

typedef struct {
char *setname; /* set name */
int start;
int number; /* record number */
Odr_oid *format; /* format, transfer syntax (OID) */
Z_ReferenceId *referenceId;/* reference ID */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; /* encoding stream - memory source if required */
ODR print; /* printing stream */
bend_request request;
bend_association association;

int hits; /* number of hits */
int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */

} bend_present_rr;

The bend_present handler is called when the server receives a Z39.50 Present Request. The setname,
start and number is the name of the result set - start position - and number of records to be retrieved
respectively. format and comp is the preferred transfer syntax and element specifications of the present
request.

Note that this is handler serves as a supplement for bend_fetch and need not to be defined in order to
support search - and retrieve.

4.5.3 Delete

For back-ends that supports delete of a result set, only one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef struct bend_delete_rr {
int function;
int num_setnames;
char **setnames;
Z_ReferenceId *referenceId;
int delete_status; /* status for the whole operation */
int *statuses; /* status each set - indexed as setnames */
ODR stream;
ODR print;

} bend_delete_rr;

Note
The delete set function definition is rather primitive, mostly because we have had no practical need for it
as of yet. If someone wants to provide a full delete service, we’d be happy to add the extra parameters
that are required. Are there clients out there that will actually delete sets they no longer need?

4.5.4 Scan

For servers that wish to offer the scan service one handler must be defined.

int (*bend_scan)(void *handle, bend_scan_rr *rr);

typedef enum {
BEND_SCAN_SUCCESS, /* ok */
BEND_SCAN_PARTIAL /* not all entries could be found */

} bend_scan_status;

typedef struct bend_scan_rr {
int num_bases; /* number of elements in databaselist */
char **basenames; /* databases to search */
Odr_oid *attributeset;
Z_ReferenceId *referenceId; /* reference ID */
Z_AttributesPlusTerm *term;
ODR stream; /* encoding stream - memory source if required */
ODR print; /* printing stream */

int *step_size; /* step size */
int term_position; /* desired index of term in result list/returned */

YAZ User’s Guide and Reference 43 / 186

int num_entries; /* number of entries requested/returned */

/* scan term entries. The called handler does not have
to allocate this. Size of entries is num_entries (see above) */

struct scan_entry *entries;
bend_scan_status status;
int errcode;
char *errstring;
char *scanClause; /* CQL scan clause */
char *setname; /* Scan in result set (NULL if omitted) */

} bend_scan_rr;

This backend server handles both Z39.50 scan and SRU scan. In order for a handler to distinguish between
SRU (CQL) scan Z39.50 Scan, it must check for a non-NULL value of scanClause.

Note
If designed today, it would be a choice using a union or similar, but that would break binary compatibility
with existing servers.

4.6 Application Invocation

The finished application has the following invocation syntax (by way of statserv_main()):

application [-install] [-installa] [-remove] [-a file] [-v level] [-l file] [-u uid]
[-c config] [-f vconfig] [-C fname] [-t minutes] [-k kilobytes] [-K] [-d daemon] [-w
dir] [-p pidfile] [-r kilobytes] [-ziDSTV1] [listener-spec...]

The options are:

-a file Specify a file for dumping PDUs (for diagnostic purposes). The special name - (dash) sends
output to stderr.

-S Don’t fork or make threads on connection requests. This is good for debugging, but not recommended
for real operation: Although the server is asynchronous and non-blocking, it can be nice to keep a
software malfunction (okay then, a crash) from affecting all current users.

-1 Like -S but after one session the server exits. This mode is for debugging only.

-T Operate the server in threaded mode. The server creates a thread for each connection rather than fork a
process. Only available on UNIX systems that offer POSIX threads.

-s Use the SR protocol (obsolete).

-z Use the Z39.50 protocol (default). This option and -s complement each other. You can use both
multiple times on the same command line, between listener-specifications (see below). This way, you
can set up the server to listen for connections in both protocols concurrently, on different local ports.

-l file The logfile.

-c config A user option that serves as a specifier for some sort of configuration, usually a filename. The
argument to this option is transferred to member configname of the statserv_options_block.

-f vconfig This specifies an XML file that describes one or more YAZ frontend virtual servers.

-C fname Sets SSL certificate file name for server (PEM).

-v level The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,malloc,all,none}.

-u uid Set user ID. Sets the real UID of the server process to that of the given user. It’s useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged
port.

-w dir The server changes to this directory before listening to incoming connections. This option is
useful when the server is operating from the inetd daemon (see -i).

-p pidfile Specifies that the server should write its Process ID to the file given by pidfile. A typical
location would be /var/run/yaz-ztest.pid.

-i Use this to make the the server run from the inetd server (UNIX only).

-D Use this to make the server put itself in the background and run as a daemon. If neither -i nor -D is
given, the server starts in the foreground.

-install Use this to install the server as an NT service (Windows NT/2000/XP only). Control the server
by going to the Services in the Control Panel.

-installa Use this to install the server as an NT service and mark it as "auto-start. Control the server
by going to the Services in the Control Panel.

-remove Use this to remove the server from the NT services (Windows NT/2000/XP only).

-t minutes Idle session timeout, in minutes.

-k size Maximum record size/message size, in kilobytes.

-K Forces no-keepalive for HTTP sessions. By default GFS will keep sessions alive for HTTP 1.1 sessions
(as defined by the standard). Using this option will force GFS to close the connection for each
operation.

-r size Maximum size of log file before rotation occurs, in kilobytes. Default size is 1048576 k (=1
GB).

-d daemon Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

-m time-format Sets the format of time-stamps in the log-file. Specify a string in the input format to
strftime().

-V Display YAZ version and exit.

YAZ User’s Guide and Reference 45 / 186

A listener specification consists of a transport mode followed by a colon (:) followed by a listener address.
The transport mode is either tcp, unix: or ssl.

For TCP and SSL, an address has the form

hostname | IP-number [: portnumber]

The port number defaults to 210 (standard Z39.50 port).

For UNIX, the address is the filename of socket.

For TCP/IP and SSL, the special hostnames @, maps to IN6ADDR_ANY_INIT with IPV4 binding as
well (bindv6only=0), The special hostname @4 binds to INADDR_ANY (IPV4 only listener). The special
hostname @6 binds to IN6ADDR_ANY_INIT with bindv6only=1 (IPV6 only listener).

Example 4.1 Running the GFS on Unix
Assuming the server application appname is started as root, the following will make it listen on port 210.
The server will change identity to nobody and write its log to /var/log/app.log.

application -l /var/log/app.log -u nobody tcp:@:210

The server will accept Z39.50 requests and offer SRU service on port 210.

Example 4.2 Setting up Apache as SRU Frontend
If you use Apache as your public web server and want to offer HTTP port 80 access to the YAZ server on
210, you can use the ProxyPass directive. If you have virtual host srw.mydomain you can use the
following directives in Apache’s httpd.conf:

<VirtualHost *>
ErrorLog /home/srw/logs/error_log
TransferLog /home/srw/logs/access_log
ProxyPass / http://srw.mydomain:210/

</VirtualHost>

The above is for the Apache 1.3 series.

Example 4.3 Running a server with local access only
A server that is only being accessed from the local host should listen on UNIX file socket rather than an
Internet socket. To listen on /tmp/mysocket start the server as follows:

application unix:/tmp/mysocket

4.7 GFS Configuration and Virtual Hosts

The Virtual hosts mechanism allows a YAZ front-end server to support multiple back-ends. A back-end is
selected on the basis of the TCP/IP binding (port+listening address) and/or the virtual host.

https://httpd.apache.org/
https://httpd.apache.org/docs/current/mod/mod_proxy.html#proxypass

A back-end can be configured to execute in a particular working directory. Or the YAZ front-end may
perform CQL to RPN conversion, thus allowing traditional Z39.50 back-ends to be offered as a SRW/SRU
service. SRW/SRU Explain information for a particular back-end may also be specified.

For the HTTP protocol, the virtual host is specified in the Host header. For the Z39.50 protocol, the virtual
host is specified as in the Initialize Request in the OtherInfo, OID 1.2.840.10003.10.1000.81.1.

Note
Not all Z39.50 clients allow the VHOST information to be set. For those, the selection of the back-end
must rely on the TCP/IP information alone (port and address).

The YAZ front-end server uses XML to describe the back-end configurations. Command-line option -f
specifies filename of the XML configuration.

The configuration uses the root element yazgfs. This element includes a list of listen elements, fol-
lowed by one or more server elements.

The listen describes listener (transport end point), such as TCP/IP, Unix file socket or SSL server. Con-
tent for a listener:

CDATA (required) The CDATA for the listen element holds the listener string, such as tcp:@:210,
tcp:server1:2100, etc.

attribute id (optional) Identifier for this listener. This may be referred to from server sections.

Note
We expect more information to be added for the listen section in a future version, such as CERT file for
SSL servers.

The server describes a server and the parameters for this server type. Content for a server:

attribute id (optional) Identifier for this server. Currently not used for anything, but it might be for
logging purposes.

attribute listenref (optional) Specifies one or more listeners for this server. Each server ID is sepa-
rated by a comma. If this attribute is not given, the server is accessible from all listeners. In order for
the server to be used for real, however, the virtual host must match if specified in the configuration.

element config (optional) Specifies the server configuration. This is equivalent to the config specified
using command line option -c.

element directory (optional) Specifies a working directory for this backend server. If specified, the
YAZ frontend changes current working directory to this directory whenever a backend of this type is
started (backend handler bend_start), stopped (backend handler hand_stop) and initialized (bend_init).

element host (optional) Specifies the virtual host for this server. If this is specified a client must specify
this host string in order to use this backend.

YAZ User’s Guide and Reference 47 / 186

element cql2rpn (optional) Specifies a filename that includes CQL to RPN conversion for this backend
server. See Section 7.1.3.4. If given, the backend server will only "see" a Type-1/RPN query.

element ccl2rpn (optional) Specifies a filename that includes CCL to RPN conversion for this backend
server. See Section 7.1.2.2. If given, the backend server will only "see" a Type-1/RPN query.

element stylesheet (optional) Specifies the stylesheet reference to be part of SRU HTTP responses
when the client does not specify one. If none is given, then if the client does not specify one, then no
stylesheet reference is part of the SRU HTTP response.

element client_query_charset (optional) If specified, a conversion from the character set given to
UTF-8 is performed by the generic frontend server. It is only executed for Z39.50 search requests
(SRU/Solr are assumed to be UTF-8 encoded already).

element docpath (optional) Specifies a path for local file access using HTTP. All URLs with a leading
prefix (/ excluded) that matches the value of docpath are used for file access. For example, if
the server is to offer access in directory xsl, the docpath would be xsl and all URLs of the form
http://host/xsl will result in a local file access.

element explain (optional) Specifies SRW/SRU ZeeRex content for this server. Copied verbatim to the
client. As things are now, some of the Explain content seem redundant because host information, etc.
is also stored elsewhere.

element maximumrecordsize (optional) Specifies maximum record size/message size, in bytes. This
value also serves as the maximum size of incoming packages (for Record Updates etc). It’s the same
value as that given by the -k option.

element retrievalinfo (optional) Enables the retrieval facility to support conversions and specifica-
tions of record formats/types. See Section 7.6 for more information.

The XML below configures a server that accepts connections from two ports, TCP/IP port 9900 and a local
UNIX file socket. We name the TCP/IP server public and the other server internal.

<yazgfs>
<listen id="public">tcp:@:9900</listen>
<listen id="internal">unix:/var/tmp/socket</listen>
<server id="server1">

<host>server1.mydomain</host>
<directory>/var/www/s1</directory>
<config>config.cfg</config>

</server>
<server id="server2" listenref="public,internal">

<host>server2.mydomain</host>
<directory>/var/www/s2</directory>
<config>config.cfg</config>
<cql2rpn>../etc/pqf.properties</cql2rpn>
<explain xmlns="http://explain.z3950.org/dtd/2.0/">

<serverInfo>
<host>server2.mydomain</host>
<port>9900</port>

<database>a</database>
</serverInfo>

</explain>
</server>
<server id="server3" listenref="internal">
<directory>/var/www/s3</directory>
<config>config.cfg</config>

</server>
</yazgfs>

There are three configured backend servers. The first two servers, "server1" and "server2", can be
reached by both listener addresses. "server1" is reached by all (two) since no listenref attribute is
specified. "server2" is reached by the two listeners specified. In order to distinguish between the two, a
virtual host has been specified for each server in the host elements.

For "server2" elements for CQL to RPN conversion is supported and explain information has been
added (a short one here to keep the example small).

The third server, "server3" can only be reached via listener "internal".

YAZ User’s Guide and Reference 49 / 186

Chapter 5

The Z39.50 ASN.1 Module

5.1 Introduction

The Z39.50 ASN.1 module provides you with a set of C struct definitions for the various PDUs of the Z39.50
protocol, as well as for the complex types appearing within the PDUs. For the primitive data types, the C
representation often takes the form of an ordinary C language type, such as Odr_int which is equivalent
to an integral C integer. For ASN.1 constructs that have no direct representation in C, such as general octet
strings and bit strings, the ODR module (see section The ODR Module) provides auxiliary definitions.

The Z39.50 ASN.1 module is located in sub directory z39.50. There you’ll find C files that implement
encoders and decoders for the Z39.50 types. You’ll also find the protocol definitions: z3950v3.asn,
esupdate.asn, and others.

5.2 Preparing PDUs

A structure representing a complex ASN.1 type doesn’t in itself contain the members of that type. Instead,
the structure contains pointers to the members of the type. This is necessary, in part, to allow a mechanism
for specifying which of the optional structure (SEQUENCE) members are present, and which are not. It
follows that you will need to somehow provide space for the individual members of the structure, and set
the pointers to refer to the members.

The conversion routines don’t care how you allocate and maintain your C structures - they just follow the
pointers that you provide. Depending on the complexity of your application, and your personal taste, there
are at least three different approaches that you may take when you allocate the structures.

You can use static or automatic local variables in the function that prepares the PDU. This is a simple
approach, and it provides the most efficient form of memory management. While it works well for flat
PDUs like the InitRequest, it will generally not be sufficient for say, the generation of an arbitrarily complex
RPN query structure.

You can individually create the structure and its members using the malloc(2) function. If you want to
ensure that the data is freed when it is no longer needed, you will have to define a function that individually
releases each member of a structure before freeing the structure itself.

You can use the odr_malloc() function (see Section 8.2 for details). When you use odr_malloc(),
you can release all of the allocated data in a single operation, independent of any pointers and relations
between the data. The odr_malloc() function is based on a "nibble-memory" scheme, in which large
portions of memory are allocated, and then gradually handed out with each call to odr_malloc(). The
next time you call odr_reset(), all of the memory allocated since the last call is recycled for future use
(actually, it is placed on a free-list).

You can combine all of the methods described here. This will often be the most practical approach. For
instance, you might use odr_malloc() to allocate an entire structure and some of its elements, while
you leave other elements pointing to global or per-session default variables.

The Z39.50 ASN.1 module provides an important aid in creating new PDUs. For each of the PDU types
(say, Z_InitRequest), a function is provided that allocates and initializes an instance of that PDU type
for you. In the case of the InitRequest, the function is simply named zget_InitRequest(), and it
sets up reasonable default value for all of the mandatory members. The optional members are generally
initialized to null pointers. This last aspect is very important: it ensures that if the PDU definitions are
extended after you finish your implementation (to accommodate new versions of the protocol, say), you
won’t get into trouble with uninitialized pointers in your structures. The functions use odr_malloc() to
allocate the PDUs and its members, so you can free everything again with a single call to odr_reset().
We strongly recommend that you use the zget_* functions whenever you are preparing a PDU (in a C++
API, the zget_ functions would probably be promoted to constructors for the individual types).

The prototype for the individual PDU types generally look like this:

Z_<type> *zget_<type>(ODR o);

e.g.:

Z_InitRequest *zget_InitRequest(ODR o);

The ODR handle should generally be your encoding stream, but it needn’t be.

As well as the individual PDU functions, a function zget_APDU() is provided, which allocates a top-level
Z-APDU of the type requested:

Z_APDU *zget_APDU(ODR o, int which);

The which parameter is (of course) the discriminator belonging to the Z_APDU CHOICE type. All of the
interface described here is provided by the Z39.50 ASN.1 module, and you access it through the proto.h
header file.

YAZ User’s Guide and Reference 51 / 186

5.3 EXTERNAL Data

In order to achieve extensibility and adaptability to different application domains, the new version of the
protocol defines many structures outside of the main ASN.1 specification, referencing them through ASN.1
EXTERNAL constructs. To simplify the construction and access to the externally referenced data, the
Z39.50 ASN.1 module defines a specialized version of the EXTERNAL construct, called Z_External.It
is defined thus:
typedef struct Z_External
{

Odr_oid *direct_reference;
int *indirect_reference;
char *descriptor;
enum
{

/* Generic types */
Z_External_single = 0,
Z_External_octet,
Z_External_arbitrary,

/* Specific types */
Z_External_SUTRS,
Z_External_explainRecord,
Z_External_resourceReport1,
Z_External_resourceReport2

...

} which;
union
{

/* Generic types */
Odr_any *single_ASN1_type;
Odr_oct *octet_aligned;
Odr_bitmask *arbitrary;

/* Specific types */
Z_SUTRS *sutrs;
Z_ExplainRecord *explainRecord;
Z_ResourceReport1 *resourceReport1;
Z_ResourceReport2 *resourceReport2;

...

} u;
} Z_External;

When decoding, the Z39.50 ASN.1 module will attempt to determine which syntax describes the data by
looking at the reference fields (currently only the direct-reference). For ASN.1 structured data, you need
only consult the which field to determine the type of data. You can the access the data directly through

the union. When constructing data for encoding, you set the union pointer to point to the data, and set the
which field accordingly. Remember also to set the direct (or indirect) reference to the correct OID for the
data type. For non-ASN.1 data such as MARC records, use the octet_aligned arm of the union.

Some servers return ASN.1 structured data values (e.g. database records) as BER-encoded records placed
in the octet-aligned branch of the EXTERNAL CHOICE. The ASN-module will not automatically
decode these records. To help you decode the records in the application, the function

Z_ext_typeent *z_ext_gettypebyref(const oid *oid);

can be used to retrieve information about the known, external data types. The function returns a pointer to a
static area, or NULL, if no match for the given direct reference is found. The Z_ext_typeent is defined
as:

typedef struct Z_ext_typeent
{

int oid[OID_SIZE]; /* the direct-reference OID. */
int what; /* discriminator value for the external CHOICE */
Odr_fun fun; /* decoder function */

} Z_ext_typeent;

The what member contains the Z_External union discriminator value for the given type: For the
SUTRS record syntax, the value would be Z_External_sutrs. The fun member contains a pointer to
the function which encodes/decodes the given type. Again, for the SUTRS record syntax, the value of fun
would be z_SUTRS (a function pointer).

If you receive an EXTERNAL which contains an octet-string value that you suspect of being an ASN.1-
structured data value, you can use z_ext_gettypebyref to look for the provided direct-reference. If
the return value is different from NULL, you can use the provided function to decode the BER string (see
Section 8.2).

If you want to send EXTERNALs containing ASN.1-structured values in the octet-aligned branch of the
CHOICE, this is possible too. However, on the encoding phase, it requires a somewhat involved juggling
around of the various buffers involved.

If you need to add new, externally defined data types, you must update the struct above, in the source file
prt-ext.h, as well as the encoder/decoder in the file prt-ext.c. When changing the latter, remember
to update both the arm array and the list type_table, which drives the CHOICE biasing that is necessary
to tell the different, structured types apart on decoding.

Note
Eventually, the EXTERNAL processing will most likely automatically insert the correct OIDs or indirect-refs.
First, however, we need to determine how application-context management (specifically the presentation-
context-list) should fit into the various modules.

5.4 PDU Contents Table

We include, for reference, a listing of the fields of each top-level PDU, as well as their default settings.

YAZ User’s Guide and Reference 53 / 186

Field Type Default Value
referenceId Z_ReferenceId NULL
protocolVersion Odr_bitmask Empty bitmask
options Odr_bitmask Empty bitmask
preferredMessageSize Odr_int 30*1024
maximumRecordSize Odr_int 30*1024
idAuthentication Z_IdAuthentication NULL
implementationId char* "81"
implementationName char* "YAZ"
implementationVersion char* YAZ_VERSION
userInformationField Z_UserInformation NULL
otherInfo Z_OtherInformation NULL

Table 5.1: Default settings for PDU Initialize Request

Field Type Default Value
referenceId Z_ReferenceId NULL
protocolVersion Odr_bitmask Empty bitmask
options Odr_bitmask Empty bitmask
preferredMessageSize Odr_int 30*1024
maximumRecordSize Odr_int 30*1024
result Odr_bool TRUE
implementationId char* "id)"
implementationName char* "YAZ"
implementationVersion char* YAZ_VERSION
userInformationField Z_UserInformation NULL
otherInfo Z_OtherInformation NULL

Table 5.2: Default settings for PDU Initialize Response

Field Type Default Value
referenceId Z_ReferenceId NULL
smallSetUpperBound Odr_int 0
largeSetLowerBound Odr_int 1
mediumSetPresentNumber Odr_int 0
replaceIndicator Odr_bool TRUE
resultSetName char * "default"
num_databaseNames Odr_int 0
databaseNames char ** NULL
smallSetElementSetNames Z_ElementSetNames NULL
mediumSetElementSetNames Z_ElementSetNames NULL
preferredRecordSyntax Odr_oid NULL
query Z_Query NULL
additionalSearchInfo Z_OtherInformation NULL
otherInfo Z_OtherInformation NULL

Table 5.3: Default settings for PDU Search Request

Field Type Default Value
referenceId Z_ReferenceId NULL
resultCount Odr_int 0
numberOfRecordsReturned Odr_int 0
nextResultSetPosition Odr_int 0
searchStatus Odr_bool TRUE
resultSetStatus Odr_int NULL
presentStatus Odr_int NULL
records Z_Records NULL
additionalSearchInfo Z_OtherInformation NULL
otherInfo Z_OtherInformation NULL

Table 5.4: Default settings for PDU Search Response

YAZ User’s Guide and Reference 55 / 186

Field Type Default Value
referenceId Z_ReferenceId NULL
resultSetId char* "default"
resultSetStartPoint Odr_int 1
numberOfRecordsRequested Odr_int 10
num_ranges Odr_int 0
additionalRanges Z_Range NULL
recordComposition Z_RecordComposition NULL
preferredRecordSyntax Odr_oid NULL
maxSegmentCount Odr_int NULL
maxRecordSize Odr_int NULL
maxSegmentSize Odr_int NULL
otherInfo Z_OtherInformation NULL

Table 5.5: Default settings for PDU Present Request

Field Type Default Value
referenceId Z_ReferenceId NULL
numberOfRecordsReturned Odr_int 0
nextResultSetPosition Odr_int 0
presentStatus Odr_int Z_PresentStatus_success
records Z_Records NULL
otherInfo Z_OtherInformation NULL

Table 5.6: Default settings for PDU Present Response

Field Type Default Value
referenceId Z_ReferenceId NULL
deleteFunction Odr_int Z_DeleteResultSetRequest_list
num_ids Odr_int 0
resultSetList char** NULL
otherInfo Z_OtherInformation NULL

Table 5.7: Default settings for Delete Result Set Request

Field Type Default Value
referenceId Z_ReferenceId NULL
deleteOperationStatus Odr_int Z_DeleteStatus_success
num_statuses Odr_int 0
deleteListStatuses Z_ListStatus** NULL
numberNotDeleted Odr_int NULL
num_bulkStatuses Odr_int 0
bulkStatuses Z_ListStatus NULL
deleteMessage char* NULL
otherInfo Z_OtherInformation NULL

Table 5.8: Default settings for Delete Result Set Response

Field Type Default Value
referenceId Z_ReferenceId NULL
num_databaseNames Odr_int 0
databaseNames char** NULL
attributeSet Odr_oid NULL
termListAndStartPoint Z_AttributesPlus... NULL
stepSize Odr_int NULL
numberOfTermsRequested Odr_int 20
preferredPositionInResponse Odr_int NULL
otherInfo Z_OtherInformation NULL

Table 5.9: Default settings for Scan Request

Field Type Default Value
referenceId Z_ReferenceId NULL
stepSize Odr_int NULL
scanStatus Odr_int Z_Scan_success
numberOfEntriesReturned Odr_int 0
positionOfTerm Odr_int NULL
entries Z_ListEntries NULL
attributeSet Odr_oid NULL
otherInfo Z_OtherInformation NULL

Table 5.10: Default settings for Scan Response

Field Type Default Value
referenceId Z_ReferenceId NULL
requestedAction Odr_int Z_TriggerResourceCtrl_resou..
prefResourceReportFormat Odr_oid NULL
resultSetWanted Odr_bool NULL
otherInfo Z_OtherInformation NULL

Table 5.11: Default settings for Trigger Resource Control Request

YAZ User’s Guide and Reference 57 / 186

Field Type Default Value
referenceId Z_ReferenceId NULL
suspendedFlag Odr_bool NULL
resourceReport Z_External NULL
partialResultsAvailable Odr_int NULL
responseRequired Odr_bool FALSE
triggeredRequestFlag Odr_bool NULL
otherInfo Z_OtherInformation NULL

Table 5.12: Default settings for Resource Control Request

Field Type Default Value
referenceId Z_ReferenceId NULL
continueFlag bool_t TRUE
resultSetWanted bool_t NULL
otherInfo Z_OtherInformation NULL

Table 5.13: Default settings for Resource Control Response

Field Type Default Value
referenceId Z_ReferenceId NULL
which enum Z_AccessRequest_simpleForm;
u union NULL
otherInfo Z_OtherInformation NULL

Table 5.14: Default settings for Access Control Request

Field Type Default Value
referenceId Z_ReferenceId NULL
which enum Z_AccessResponse_simpleForm
u union NULL
diagnostic Z_DiagRec NULL
otherInfo Z_OtherInformation NULL

Table 5.15: Default settings for Access Control Response

Field Type Default Value
referenceId Z_ReferenceId NULL
numberOfRecordsReturned Odr_int value=0
num_segmentRecords Odr_int 0
segmentRecords Z_NamePlusRecord NULL
otherInfo Z_OtherInformation NULL

Table 5.16: Default settings for Segment

Field Type Default Value
referenceId Z_ReferenceId NULL
closeReason Odr_int Z_Close_finished
diagnosticInformation char* NULL
resourceReportFormat Odr_oid NULL
resourceFormat Z_External NULL
otherInfo Z_OtherInformation NULL

Table 5.17: Default settings for Close

YAZ User’s Guide and Reference 59 / 186

Chapter 6

SOAP and SRU

6.1 Introduction

YAZ uses a very simple implementation of SOAP that only (currently) supports what is sufficient to offer
SRU SOAP functionality. The implementation uses the tree API of libxml2 to encode and decode SOAP
packages.

Like the Z39.50 ASN.1 module, the YAZ SRU implementation uses simple C structs to represent SOAP
packages as well as HTTP packages.

6.2 HTTP

YAZ only offers HTTP as transport carrier for SOAP, but it is relatively easy to change that.

The following definition of Z_GDU (Generic Data Unit) allows for both HTTP and Z39.50 in one packet.

#include <yaz/zgdu.h>

#define Z_GDU_Z3950 1
#define Z_GDU_HTTP_Request 2
#define Z_GDU_HTTP_Response 3
typedef struct {

int which;
union {

Z_APDU *z3950;
Z_HTTP_Request *HTTP_Request;
Z_HTTP_Response *HTTP_Response;

} u;
} Z_GDU ;

The corresponding Z_GDU encoder/decoder is z_GDU. The z3950 is any of the known BER encoded
Z39.50 APDUs. HTTP_Request and HTTP_Response is the HTTP Request and Response respec-
tively.

https://www.w3.org/TR/soap/
http://www.xmlsoft.org/html/libxml-tree.html

6.3 SOAP Packages

Every SOAP package in YAZ is represented as follows:

#include <yaz/soap.h>

typedef struct {
char *fault_code;
char *fault_string;
char *details;

} Z_SOAP_Fault;

typedef struct {
int no;
char *ns;
void *p;

} Z_SOAP_Generic;

#define Z_SOAP_fault 1
#define Z_SOAP_generic 2
#define Z_SOAP_error 3
typedef struct {

int which;
union {

Z_SOAP_Fault *fault;
Z_SOAP_Generic *generic;
Z_SOAP_Fault *soap_error;

} u;
const char *ns;

} Z_SOAP;

The fault and soap_error arms both represent a SOAP fault - struct Z_SOAP_Fault. Any other
generic (valid) package is represented by Z_SOAP_Generic.

The ns as part of Z_SOAP is the namespace for SOAP itself and reflects the SOAP version. For version 1.1
it is http://schemas.xmlsoap.org/soap/envelope/, for version 1.2 it is http://www.w3.org/2001/06/soap-envelope.

int z_soap_codec(ODR o, Z_SOAP **pp,
char **content_buf, int *content_len,
Z_SOAP_Handler *handlers);

The content_buf and content_len is XML buffer and length of buffer respectively.

The handlers is a list of SOAP codec handlers - one handler for each service namespace. For SRU
SOAP, the namespace would be http://www.loc.gov/zing/srw/v1.0/.

YAZ User’s Guide and Reference 61 / 186

When decoding, the z_soap_codec inspects the XML content and tries to match one of the services
namespaces of the supplied handlers. If there is a match. a handler function is invoked which decodes that
particular SOAP package. If successful, the returned Z_SOAP package will be of type Z_SOAP_Generic.
Member no is set the offset of the handler that matched; ns is set to namespace of the matching handler;
the void pointer p is set to the C data structure associated with the handler.

When a NULL namespace is met (member ns below), that specifies end-of-list.

Each handler is defined as follows:

typedef struct {
char *ns;
void *client_data;
Z_SOAP_fun f;

} Z_SOAP_Handler;

The ns is the namespace of the service associated with handler f. The client_data is user-defined data
which is passed to the handler.

The prototype for a SOAP service handler is:

int handler(ODR o, void * ptr, void **handler_data,
void *client_data, const char *ns);

The o specifies the mode (decode/encode) as usual. The second argument, ptr, is a libxml2 tree node
pointer (xmlNodePtr) and is a pointer to the Body element of the SOAP package. The handler_data
is an opaque pointer to C definitions associated with the SOAP service. The client_data is the pointer
which was set as part of the Z_SOAP_handler. Finally, ns is the service namespace.

6.4 SRU

SRU SOAP is just one implementation of a SOAP handler as described in the previous section. The en-
coder/decoder handler for SRU is defined as follows:

#include <yaz/srw.h>

int yaz_srw_codec(ODR o, void * pptr,
Z_SRW_GDU **handler_data,
void *client_data, const char *ns);

Here, Z_SRW_GDU is either searchRetrieveRequest or a searchRetrieveResponse.

Note
The xQuery and xSortKeys are not handled yet by the SRW implementation of YAZ. Explain is also miss-
ing. Future versions of YAZ will include these features.

The definition of searchRetrieveRequest is:

typedef struct {

#define Z_SRW_query_type_cql 1
#define Z_SRW_query_type_xcql 2
#define Z_SRW_query_type_pqf 3

int query_type;
union {

char *cql;
char *xcql;
char *pqf;

} query;

#define Z_SRW_sort_type_none 1
#define Z_SRW_sort_type_sort 2
#define Z_SRW_sort_type_xSort 3

int sort_type;
union {

char *none;
char *sortKeys;
char *xSortKeys;

} sort;
int *startRecord;
int *maximumRecords;
char *recordSchema;
char *recordPacking;
char *database;

} Z_SRW_searchRetrieveRequest;

Please observe that data of type xsd:string is represented as a char pointer (char *). A null pointer means
that the element is absent. Data of type xsd:integer is represented as a pointer to an int (int *). Again, a
null pointer is used for absent elements.

The SearchRetrieveResponse has the following definition.

typedef struct {
int * numberOfRecords;
char * resultSetId;
int * resultSetIdleTime;

YAZ User’s Guide and Reference 63 / 186

Z_SRW_record *records;
int num_records;

Z_SRW_diagnostic *diagnostics;
int num_diagnostics;
int *nextRecordPosition;

} Z_SRW_searchRetrieveResponse;

The num_records and num_diagnostics is number of returned records and diagnostics respectively,
and also correspond to the "size of" arrays records and diagnostics.

A retrieval record is defined as follows:

typedef struct {
char *recordSchema;
char *recordData_buf;
int recordData_len;
int *recordPosition;

} Z_SRW_record;

The record data is defined as a buffer of some length so that data can be of any type. SRW 1.0 currently
doesn’t allow for this (only XML), but future versions might do.

And, a diagnostic as:

typedef struct {
int *code;
char *details;

} Z_SRW_diagnostic;

YAZ User’s Guide and Reference 65 / 186

Chapter 7

Supporting Tools

In support of the service API - primarily the ASN module, which provides the programmatic interface to
the Z39.50 APDUs, YAZ contains a collection of tools that support the development of applications.

7.1 Query Syntax Parsers

Since the type-1 (RPN) query structure has no direct, useful string representation, every origin application
needs to provide some form of mapping from a local query notation or representation to a Z_RPNQuery
structure. Some programmers will prefer to construct the query manually, perhaps using odr_malloc()
to simplify memory management. The YAZ distribution includes three separate, query-generating tools that
may be of use to you.

7.1.1 Prefix Query Format

Since RPN or reverse polish notation is really just a fancy way of describing a suffix notation format
(operator follows operands), it would seem that the confusion is total when we now introduce a prefix
notation for RPN. The reason is one of simple laziness - it’s somewhat simpler to interpret a prefix format,
and this utility was designed for maximum simplicity, to provide a baseline representation for use in simple
test applications and scripting environments (like Tcl). The demonstration client included with YAZ uses
the PQF.

Note
The PQF has been adopted by other parties developing Z39.50 software. It is often referred to as Prefix
Query Notation - PQN.

The PQF is defined by the pquery module in the YAZ library. There are two sets of functions that have
similar behavior. First set operates on a PQF parser handle, second set doesn’t. First set of functions
are more flexible than the second set. Second set is obsolete and is only provided to ensure backwards
compatibility.

First set of functions all operate on a PQF parser handle:

#include <yaz/pquery.h>

YAZ_PQF_Parser yaz_pqf_create(void);

void yaz_pqf_destroy(YAZ_PQF_Parser p);

Z_RPNQuery *yaz_pqf_parse(YAZ_PQF_Parser p, ODR o, const char *qbuf);

Z_AttributesPlusTerm *yaz_pqf_scan(YAZ_PQF_Parser p, ODR o,
Odr_oid **attributeSetId, const char *qbuf);

int yaz_pqf_error(YAZ_PQF_Parser p, const char **msg, size_t *off);

A PQF parser is created and destructed by functions yaz_pqf_create and yaz_pqf_destroy re-
spectively. Function yaz_pqf_parse parses the query given by string qbuf. If parsing was successful,
a Z39.50 RPN Query is returned which is created using ODR stream o. If parsing failed, a NULL pointer
is returned. Function yaz_pqf_scan takes a scan query in qbuf. If parsing was successful, the function
returns attributes plus term pointer and modifies attributeSetId to hold attribute set for the scan re-
quest - both allocated using ODR stream o. If parsing failed, yaz_pqf_scan returns a NULL pointer. Error
information for bad queries can be obtained by a call to yaz_pqf_error which returns an error code and
modifies *msg to point to an error description, and modifies *off to the offset within the last query where
parsing failed.

The second set of functions are declared as follows:

#include <yaz/pquery.h>

Z_RPNQuery *p_query_rpn(ODR o, oid_proto proto, const char *qbuf);

Z_AttributesPlusTerm *p_query_scan(ODR o, oid_proto proto,
Odr_oid **attributeSetP, const char *qbuf);

int p_query_attset(const char *arg);

The function p_query_rpn() takes as arguments an ODR stream (see section The ODR Module) to pro-
vide a memory source (the structure created is released on the next call to odr_reset() on the stream),
a protocol identifier (one of the constants PROTO_Z3950 and PROTO_SR), an attribute set reference, and
finally a null-terminated string holding the query string.

If the parse went well, p_query_rpn() returns a pointer to a Z_RPNQuery structure which can be
placed directly into a Z_SearchRequest. If parsing failed, due to syntax error, a NULL pointer is
returned.

The p_query_attset specifies which attribute set to use if the query doesn’t specify one by the @attrset
operator. The p_query_attset returns 0 if the argument is a valid attribute set specifier; otherwise the
function returns -1.

The grammar of the PQF is as follows:

YAZ User’s Guide and Reference 67 / 186

query ::= top-set query-struct.

top-set ::= [’@attrset’ string]

query-struct ::= attr-spec | simple | complex | ’@term’ term- ←↩
type query

attr-spec ::= ’@attr’ [string] string query-struct

complex ::= operator query-struct query-struct.

operator ::= ’@and’ | ’@or’ | ’@not’ | ’@prox’ proximity.

simple ::= result-set | term.

result-set ::= ’@set’ string.

term ::= string.

proximity ::= exclusion distance ordered relation which-code ←↩
unit-code.

exclusion ::= ’1’ | ’0’ | ’void’.

distance ::= integer.

ordered ::= ’1’ | ’0’.

relation ::= integer.

which-code ::= ’known’ | ’private’ | integer.

unit-code ::= integer.

term-type ::= ’general’ | ’numeric’ | ’string’ | ’oid’ | ’ ←↩
datetime’ | ’null’.

You will note that the syntax above is a fairly faithful representation of RPN, except for the Attribute, which
has been moved a step away from the term, allowing you to associate one or more attributes with an entire
query structure. The parser will automatically apply the given attributes to each term as required.

The @attr operator is followed by an attribute specification (attr-spec above). The specification consists
of an optional attribute set, an attribute type-value pair and a sub-query. The attribute type-value pair is
packed in one string: an attribute type, an equals sign, and an attribute value, like this: @attr 1=1003.
The type is always an integer, but the value may be either an integer or a string (if it doesn’t start with a
digit character). A string attribute-value is encoded as a Type-1 "complex" attribute with the list of values
containing the single string specified, and including no semantic indicators.

Version 3 of the Z39.50 specification defines various encoding of terms. Use @term type string,
where type is one of: general, numeric or string (for InternationalString). If no term type has been
given, the general form is used. This is the only encoding allowed in both versions 2 and 3 of the Z39.50
standard.

7.1.1.1 Using Proximity Operators with PQF

Note
This is an advanced topic, describing how to construct queries that make very specific requirements on
the relative location of their operands. You may wish to skip this section and go straight to the example
PQF queries.

Warning
Most Z39.50 servers do not support proximity searching, or support only a small subset of the full
functionality that can be expressed using the PQF proximity operator. Be aware that the ability to
express a query in PQF is no guarantee that any given server will be able to execute it.

The proximity operator @prox is a special and more restrictive version of the conjunction operator @and.
Its semantics are described in section 3.7.2 (Proximity) of Z39.50 the standard itself, which can be read
on-line at https://www.loc.gov/z3950/agency/markup/09.html#3.7.2

In PQF, the proximity operation is represented by a sequence of the form

@prox exclusion distance ordered relation which-code unit-code

in which the meanings of the parameters are as described in the standard, and they can take the following
values:

• exclusion 0 = false (i.e. the proximity condition specified by the remaining parameters must be satisfied)
or 1 = true (the proximity condition specified by the remaining parameters must not be satisfied).

• distance An integer specifying the difference between the locations of the operands: e.g. two adjacent
words would have distance=1 since their locations differ by one unit.

• ordered 1 = ordered (the operands must occur in the order the query specifies them) or 0 = unordered
(they may appear in either order).

• relation Recognised values are 1 (lessThan), 2 (lessThanOrEqual), 3 (equal), 4 (greaterThanOrEqual), 5
(greaterThan) and 6 (notEqual).

• which-code known or k (the unit-code parameter is taken from the well-known list of alternatives de-
scribed below) or private or p (the unit-code parameter has semantics specific to an out-of-band agree-
ment such as a profile).

• unit-code If the which-code parameter is known then the recognised values are 1 (character), 2 (word),
3 (sentence), 4 (paragraph), 5 (section), 6 (chapter), 7 (document), 8 (element), 9 (subelement), 10 (ele-
mentType) and 11 (byte). If which-code is private then the acceptable values are determined by the
profile.

https://www.loc.gov/z3950/agency/markup/09.html#3.7.2

YAZ User’s Guide and Reference 69 / 186

(The numeric values of the relation and well-known unit-code parameters are taken straight from the ASN.1
of the proximity structure in the standard.)

7.1.1.2 PQF queries

Example 7.1 PQF queries using simple terms
dylan

"bob dylan"

Example 7.2 PQF boolean operators
@or "dylan" "zimmerman"

@and @or dylan zimmerman when

@and when @or dylan zimmerman

Example 7.3 PQF references to result sets
@set Result-1

@and @set seta @set setb

Example 7.4 Attributes for terms
@attr 1=4 computer

@attr 1=4 @attr 4=1 "self portrait"

@attrset exp1 @attr 1=1 CategoryList

@attr gils 1=2008 Copenhagen

@attr 1=/book/title computer

Example 7.5 PQF Proximity queries
@prox 0 3 1 2 k 2 dylan zimmerman

Here the parameters 0, 3, 1, 2, k and 2 represent exclusion, distance, ordered, relation, which-code and
unit-code, in that order. So:

• exclusion = 0: the proximity condition must hold

• distance = 3: the terms must be three units apart

• ordered = 1: they must occur in the order they are specified

https://www.loc.gov/z3950/agency/asn1.html#ProximityOperator

• relation = 2: lessThanOrEqual (to the distance of 3 units)

• which-code is "known", so the standard unit-codes are used

• unit-code = 2: word.

So the whole proximity query means that the words dylan and zimmermanmust both occur in the record,
in that order, differing in position by three or fewer words (i.e. with two or fewer words between them.) The
query would find "Bob Dylan, aka. Robert Zimmerman", but not "Bob Dylan, born as Robert Zimmerman"
since the distance in this case is four.

Example 7.6 PQF specification of search term type
@term string "a UTF-8 string, maybe?"

Example 7.7 PQF mixed queries
@or @and bob dylan @set Result-1

@attr 4=1 @and @attr 1=1 "bob dylan" @attr 1=4 "slow train coming"

@and @attr 2=4 @attr gils 1=2038 -114 @attr 2=2 @attr gils 1=2039 -109

The last of these examples is a spatial search: in the GILS attribute set, access point 2038 indicates West
Bounding Coordinate and 2030 indicates East Bounding Coordinate, so the query is for areas extending
from -114 degrees longitude to no more than -109 degrees longitude.

7.1.2 CCL

Not all users enjoy typing in prefix query structures and numerical attribute values, even in a minimalis-
tic test client. In the library world, the more intuitive Common Command Language - CCL (ISO 8777)
has enjoyed some popularity - especially before the widespread availability of graphical interfaces. It is
still useful in applications where you for some reason or other need to provide a symbolic language for
expressing boolean query structures.

7.1.2.1 CCL Syntax

The CCL parser obeys the following grammar for the FIND argument. The syntax is annotated using lines
prefixed by --.

CCL-Find ::= CCL-Find Op Elements
| Elements.

Op ::= "and" | "or" | "not"
-- The above means that Elements are separated by boolean operators.

Elements ::= ’(’ CCL-Find ’)’
| Set
| Terms

http://www.gils.net/prof_v2.html#sec_7_4

YAZ User’s Guide and Reference 71 / 186

| Qualifiers Relation Terms
| Qualifiers Relation ’(’ CCL-Find ’)’
| Qualifiers ’=’ string ’-’ string

-- Elements is either a recursive definition, a result set reference, ←↩
a

-- list of terms, qualifiers followed by terms, qualifiers followed
-- by a recursive definition or qualifiers in a range (lower - upper) ←↩

.

Set ::= ’set’ = string
-- Reference to a result set

Terms ::= Terms Prox Term
| Term

-- Proximity of terms.

Term ::= Term string
| string

-- This basically means that a term may include a blank

Qualifiers ::= Qualifiers ’,’ string
| string

-- Qualifiers is a list of strings separated by comma

Relation ::= ’=’ | ’>=’ | ’<=’ | ’<>’ | ’>’ | ’<’
-- Relational operators. This really doesn’t follow the ISO8777
-- standard.

Prox ::= ’%’ | ’!’
-- Proximity operator

Example 7.8 CCL queries
The following queries are all valid:

dylan

"bob dylan"

dylan or zimmerman

set=1

(dylan and bob) or set=1

righttrunc?

"notrunc?"

singlechar#mask

Assuming that the qualifiers ti and au and date are defined, we may use:

ti=self portrait

au=(bob dylan and slow train coming)

date>1980 and (ti=((self portrait)))

7.1.2.2 CCL Qualifiers

Qualifiers are used to direct the search to a particular searchable index, such as title (ti) and author indexes
(au). The CCL standard itself doesn’t specify a particular set of qualifiers, but it does suggest a few short-
hand notations. You can customize the CCL parser to support a particular set of qualifiers to reflect the
current target profile. Traditionally, a qualifier would map to a particular use-attribute within the BIB-1
attribute set. It is also possible to set other attributes, such as the structure attribute.

A CCL profile is a set of predefined CCL qualifiers that may be read from a file or set in the CCL API. The
YAZ client reads its CCL qualifiers from a file named default.bib. There are four types of lines in a
CCL profile: qualifier specification, qualifier alias, comments and directives.

7.1.2.2.1 Qualifier specification

A qualifier specification is of the form:

qualifier-name [attributeset,]type=val [attributeset,]type=val ...

where qualifier-name is the name of the qualifier to be used (e.g. ti), type is attribute type in the
attribute set (Bib-1 is used if no attribute set is given) and val is attribute value. The type can be specified
as an integer, or as a single-letter: u for use, r for relation, p for position, s for structure,t for truncation,
or c for completeness. The attributes for the special qualifier name term are used when no CCL qualifier
is given in a query.

Refer to Bib-1 Attribute Set(7) or the complete list of Bib-1 attributes

It is also possible to specify non-numeric attribute values, which are used in combination with certain types.
The special combinations are:

Example 7.9 CCL profile
Consider the following definition:

ti u=4 s=1
au u=1 s=1
term s=105
ranked r=102
date u=30 r=o

ti and au both set structure attribute to phrase (s=1). ti sets the use-attribute to 4. au sets the use-attribute
to 1. When no qualifiers are used in the query, the structure-attribute is set to free-form-text (105) (rule for
term). The date sets the relation attribute to the relation used in the CCL query and sets the use attribute
to 30 (Bib-1 Date).
You can combine attributes. To Search for "ranked title" you can do

https://www.loc.gov/z3950/agency/defns/bib1.html

YAZ User’s Guide and Reference 73 / 186

Type Description

u=value
Use attribute (1). Common use attributes are 1 Personal-name, 4 Title, 7 ISBN, 8
ISSN, 30 Date, 62 Subject, 1003 Author, 1016 Any. Specify value as an integer.

r=value
Relation attribute (2). Common values are 1 <, 2 <=, 3 =, 4 >=, 5 >, 6 <>, 100
phonetic, 101 stem, 102 relevance, 103 always matches.

p=value
Position attribute (3). Values: 1 first in field, 2 first in any subfield, 3 any position
in field.

s=value

Structure attribute (4). Values: 1 phrase, 2 word, 3 key, 4 year, 5 date, 6 word list,
100 date (un), 101 name (norm), 102 name (un), 103 structure, 104 urx, 105
free-form-text, 106 document-text, 107 local-number, 108 string, 109 numeric
string.

t=value
Truncation attribute (5). Values: 1 right, 2 left, 3 left and right, 100 none, 101
process #, 102 regular-1, 103 regular-2, 104 CCL.

c=value
Completeness attribute (6). Values: 1 incomplete subfield, 2 complete subfield, 3
complete field.

Table 7.1: Common Bib-1 attributes

ti,ranked=knuth computer

which will set relation=ranked, use=title, structure=phrase.
Query

date > 1980

is a valid query. But

ti > 1980

is invalid.

7.1.2.2.2 Qualifier alias

A qualifier alias is of the form:

q q1 q2 ..

which declares q to be an alias for q1, q2... such that the CCL query q=x is equivalent to q1=x or q2=x

or

7.1.2.2.3 Comments

Lines with white space or lines that begin with character # are treated as comments.

7.1.2.2.4 Directives

Directive specifications takes the form

@directive value

Name Description

s=pw
The structure is set to either word or phrase depending on the number of tokens
in a term (phrase-word).

s=al Each token in the term is ANDed (and-list). This does not set the structure at all.
s=ol Each token in the term is ORed (or-list). This does not set the structure at all.

s=ag

Tokens that appears as phrases (with blank in them) gets structure phrase
attached (4=1). Tokens that appear to be words gets structure word attached
(4=2). Phrases and words are ANDed. This is a variant of s=al and s=pw, with
the main difference that words are not split (with operator AND) but instead kept
in one RPN token. This facility appeared in YAZ 4.2.38.

s=sl
Tokens are split into sub-phrases of all combinations - in order. This facility
appeared in YAZ 5.14.0.

r=o

Allows ranges and the operators greater-than, less-than, ... equals. This sets
Bib-1 relation attribute accordingly (relation ordered). A query construct is only
treated as a range if dash is used and that is surrounded by white-space. So
-1980 is treated as term "-1980" not <= 1980. If - 1980 is used,
however, that is treated as a range.

r=r

Similar to r=o but assumes that terms are non-negative (not prefixed with -).
Thus, a dash will always be treated as a range. The construct 1980-1990 is
treated as a range with r=r but as a single term "1980-1990" with r=o. The
special attribute r=r is available in YAZ 2.0.24 or later.

r=omiteq

This will omit relation=equals (@attr 2=3) when r=o / r=r is used. This is useful
for servers that somehow break when an explicit relation=equals is used.
Omitting the relation is usually safe because "equals" is the default behavior.
This tweak was added in YAZ version 5.1.2.

t=l
Allows term to be left-truncated. If term is of the form ?x, the resulting Type-1
term is x and truncation is left.

t=r
Allows term to be right-truncated. If term is of the form x?, the resulting Type-1
term is x and truncation is right.

t=n If term is does not include ?, the truncation attribute is set to none (100).

t=b
Allows term to be both left-and-right truncated. If term is of the form ?x?, the
resulting term is x and truncation is set to both left and right.

t=x
Allows masking anywhere in a term, thus fully supporting # (mask one character)
and ? (zero or more of any). If masking is used, truncation is set to 102 (regexp-1
in term) and the term is converted accordingly to a regular expression.

t=z

Allows masking anywhere in a term, thus fully supporting # (mask one
character) and ? (zero or more of any). If masking is used, truncation is set to
104 (Z39.58 in term) and the term is converted accordingly to Z39.58 masking
term - actually the same truncation as CCL itself.

Table 7.2: Special attribute combos

YAZ User’s Guide and Reference 75 / 186

Name Description Default
truncation Truncation character ?
mask Masking character. Requires YAZ 4.2.58 or later #

field
Specifies how multiple fields are to be combined. There are two
modes: or: multiple qualifier fields are ORed, merge: attributes for
the qualifier fields are merged and assigned to one term.

merge

case
Specifies if CCL operators and qualifiers should be compared with
case sensitivity or not. Specify 1 for case sensitive; 0 for case
insensitive.

1

and Specifies token for CCL operator AND. and
or Specifies token for CCL operator OR. or
not Specifies token for CCL operator NOT. not
set Specifies token for CCL operator SET. set

Table 7.3: CCL directives

7.1.2.3 CCL API

All public definitions can be found in the header file ccl.h. A profile identifier is of type CCL_bibset.
A profile must be created with the call to the function ccl_qual_mk which returns a profile handle of
type CCL_bibset.

To read a file containing qualifier definitions the function ccl_qual_file may be convenient. This
function takes an already opened FILE handle pointer as argument along with a CCL_bibset handle.

To parse a simple string with a FIND query use the function

struct ccl_rpn_node *ccl_find_str(CCL_bibset bibset, const char *str,
int *error, int *pos);

which takes the CCL profile (bibset) and query (str) as input. Upon successful completion the RPN
tree is returned. If an error occurs, such as a syntax error, the integer pointed to by error holds the error
code and pos holds the offset inside query string in which the parsing failed.

An English representation of the error may be obtained by calling the ccl_err_msg function. The error
codes are listed in ccl.h.

To convert the CCL RPN tree (type struct ccl_rpn_node *) to the Z_RPNQuery of YAZ the func-
tion ccl_rpn_query must be used. This function which is part of YAZ is implemented in yaz-ccl.c.
After calling this function the CCL RPN tree is probably no longer needed. The ccl_rpn_delete
destroys the CCL RPN tree.

A CCL profile may be destroyed by calling the ccl_qual_rm function.

The token names for the CCL operators may be changed by setting the globals (all type char *) ccl_token_and,
ccl_token_or, ccl_token_not and ccl_token_set. An operator may have aliases, i.e. there
may be more than one name for the operator. To do this, separate each alias with a space character.

7.1.3 CQL

CQL - Common Query Language - was defined for the SRU protocol. In many ways CQL has a similar

http://www.loc.gov/standards/sru/cql/
https://www.loc.gov/standards/sru/

syntax to CCL. The objective of CQL is different. Where CCL aims to be an end-user language, CQL is
the protocol query language for SRU.

Tip
If you are new to CQL, read the Gentle Introduction.

The CQL parser in YAZ provides the following:

• It parses and validates a CQL query.

• It generates a C structure that allows you to convert a CQL query to some other query language, such as
SQL.

• The parser converts a valid CQL query to PQF, thus providing a way to use CQL for both SRU servers
and Z39.50 targets at the same time.

• The parser converts CQL to XCQL. XCQL is an XML representation of CQL. XCQL is part of the
SRU specification. However, since SRU supports CQL only, we don’t expect XCQL to be widely used.
Furthermore, CQL has the advantage over XCQL that it is easy to read.

7.1.3.1 CQL parsing

A CQL parser is represented by the CQL_parser handle. Its contents should be considered YAZ internal
(private).

#include <yaz/cql.h>

typedef struct cql_parser *CQL_parser;

CQL_parser cql_parser_create(void);
void cql_parser_destroy(CQL_parser cp);

A parser is created by cql_parser_create and is destroyed by cql_parser_destroy.

To parse a CQL query string, the following function is provided:

int cql_parser_string(CQL_parser cp, const char *str);

A CQL query is parsed by the cql_parser_string which takes a query str. If the query was valid
(no syntax errors), then zero is returned; otherwise -1 is returned to indicate a syntax error.

http://zing.z3950.org/cql/intro.html

YAZ User’s Guide and Reference 77 / 186

int cql_parser_stream(CQL_parser cp,
int (*getbyte)(void *client_data),
void (*ungetbyte)(int b, void *client_data),
void *client_data);

int cql_parser_stdio(CQL_parser cp, FILE *f);

The functions cql_parser_stream and cql_parser_stdio parse a CQL query - just like cql_parser_string.
The only difference is that the CQL query can be fed to the parser in different ways. The cql_parser_stream
uses a generic byte stream as input. The cql_parser_stdio uses a FILE handle which is opened for
reading.

7.1.3.2 CQL tree

If the query string is valid, the CQL parser generates a tree representing the structure of the CQL query.

struct cql_node *cql_parser_result(CQL_parser cp);

cql_parser_result returns a pointer to the root node of the resulting tree.

Each node in a CQL tree is represented by a struct cql_node. It is defined as follows:

#define CQL_NODE_ST 1
#define CQL_NODE_BOOL 2
#define CQL_NODE_SORT 3
struct cql_node {

int which;
union {

struct {
char *index;

char *index_uri;
char *term;
char *relation;

char *relation_uri;
struct cql_node *modifiers;

} st;
struct {

char *value;
struct cql_node *left;
struct cql_node *right;
struct cql_node *modifiers;

} boolean;
struct {

char *index;

struct cql_node *next;
struct cql_node *modifiers;
struct cql_node *search;

} sort;
} u;

};

There are three node types: search term (ST), boolean (BOOL) and sortby (SORT). A modifier is treated as
a search term too.

The search term node has five members:

• index: index for search term. If an index is unspecified for a search term, index will be NULL.

• index_uri: index URI for search term or NULL if none could be resolved for the index.

• term: the search term itself.

• relation: relation for search term.

• relation_uri: relation URI for search term.

• modifiers: relation modifiers for search term. The modifiers list itself of cql_nodes each of type
ST.

The boolean node represents and, or, not + proximity.

• left and right: left - and right operand respectively.

• modifiers: proximity arguments.

The sort node represents both the SORTBY clause.

7.1.3.3 CQL to PQF conversion

Conversion to PQF (and Z39.50 RPN) is tricky by the fact that the resulting RPN depends on the Z39.50
target capabilities (combinations of supported attributes). In addition, the CQL and SRU operates on index
prefixes (URI or strings), whereas the RPN uses Object Identifiers for attribute sets.

The CQL library of YAZ defines a cql_transform_t type. It represents a particular mapping between
CQL and RPN. This handle is created and destroyed by the functions:

cql_transform_t cql_transform_open_FILE (FILE *f);
cql_transform_t cql_transform_open_fname(const char *fname);
void cql_transform_close(cql_transform_t ct);

YAZ User’s Guide and Reference 79 / 186

The first two functions create a transformation handle from either an already open FILE or from a filename
respectively.

The handle is destroyed by cql_transform_close in which case no further reference of the handle is
allowed.

When a cql_transform_t handle has been created you can convert to RPN.

int cql_transform_buf(cql_transform_t ct,
struct cql_node *cn, char *out, int max);

This function converts the CQL tree cn using handle ct. For the resulting PQF, you supply a buffer out
which must be able to hold at at least max characters.

If conversion failed, cql_transform_buf returns a non-zero SRU error code; otherwise zero is re-
turned (conversion successful). The meanings of the numeric error codes are listed in the SRU specification
somewhere (no direct link anymore).

If conversion fails, more information can be obtained by calling

int cql_transform_error(cql_transform_t ct, char **addinfop);

This function returns the most recently returned numeric error-code and sets the string-pointer at *addinfop
to point to a string containing additional information about the error that occurred: for example, if the error
code is 15 ("Illegal or unsupported context set"), the additional information is the name of the requested
context set that was not recognised.

The SRU error-codes may be translated into brief human-readable error messages using

const char *cql_strerror(int code);

If you wish to be able to produce a PQF result in a different way, there are two alternatives.

void cql_transform_pr(cql_transform_t ct,
struct cql_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

int cql_transform_FILE(cql_transform_t ct,
struct cql_node *cn, FILE *f);

The former function produces output to a user-defined output stream. The latter writes the result to an
already open FILE.

7.1.3.4 Specification of CQL to RPN mappings

The file supplied to functions cql_transform_open_FILE, cql_transform_open_fname fol-
lows a structure found in many Unix utilities. It consists of mapping specifications - one per line. Lines
starting with # are ignored (comments).

Each line is of the form

CQL pattern = RPN equivalent

An RPN pattern is a simple attribute list. Each attribute pair takes the form:

[set] type=value

The attribute set is optional. The type is the attribute type, value the attribute value.

The character * (asterisk) has special meaning when used in the RPN pattern. Each occurrence of * is
substituted with the CQL matching name (index, relation, qualifier etc). This facility can be used to copy a
CQL name verbatim to the RPN result.

The following CQL patterns are recognized:

index.set.name This pattern is invoked when a CQL index, such as dc.title is converted. set and
name are the context set and index name respectively. Typically, the RPN specifies an equivalent use
attribute.

For terms not bound by an index, the pattern index.cql.serverChoice is used. Here, the
prefix cql is defined as http://www.loc.gov/zing/cql/cql-indexes/v1.0/. If this
pattern is not defined, the mapping will fail.

The pattern, index.set.* is used when no other index pattern is matched.

qualifier.set.name (DEPRECATED) For backwards compatibility, this is recognised as a syn-
onym of index.set.name

relation.relation This pattern specifies how a CQL relation is mapped to RPN. The pattern is
name of relation operator. Since = is used as separator between CQL pattern and RPN, CQL relations
including = cannot be used directly. To avoid a conflict, the names ge, eq, le, must be used for CQL
operators, greater-than-or-equal, equal, less-than-or-equal respectively. The RPN pattern is supposed
to include a relation attribute.

For terms not bound by a relation, the pattern relation.scr is used. If the pattern is not defined,
the mapping will fail.

The special pattern, relation.* is used when no other relation pattern is matched.

relationModifier.mod This pattern specifies how a CQL relation modifier is mapped to RPN. The
RPN pattern is usually a relation attribute.

structure.type This pattern specifies how a CQL structure is mapped to RPN. Note that this CQL
pattern is somewhat similar to CQL pattern relation. The type is a CQL relation.

The pattern, structure.* is used when no other structure pattern is matched. Usually, the RPN
equivalent specifies a structure attribute.

YAZ User’s Guide and Reference 81 / 186

position.type This pattern specifies how the anchor (position) of CQL is mapped to RPN. The type
is one of first, any, last, firstAndLast.

The pattern, position.* is used when no other position pattern is matched.

set.prefix This specification defines a CQL context set for a given prefix. The value on the right hand
side is the URI for the set - not RPN. All prefixes used in index patterns must be defined this way.

set This specification defines a default CQL context set for index names. The value on the right hand
side is the URI for the set.

Example 7.10 CQL to RPN mapping file
This simple file defines two context sets, three indexes and three relations, a position pattern and a default
structure.

set.cql = http://www.loc.gov/zing/cql/context-sets/cql/v1.1/
set.dc = http://www.loc.gov/zing/cql/dc-indexes/v1.0/

index.cql.serverChoice = 1=1016
index.dc.title = 1=4
index.dc.subject = 1=21

relation.< = 2=1
relation.eq = 2=3
relation.scr = 2=3

position.any = 3=3 6=1

structure.* = 4=1

With the mappings above, the CQL query

computer

is converted to the PQF:

@attr 1=1016 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "computer"

by rules index.cql.serverChoice, relation.scr, structure.*, position.any.
CQL query

computer^

is rejected, since position.right is undefined.
CQL query

>my = "http://www.loc.gov/zing/cql/dc-indexes/v1.0/" my.title = x

is converted to

@attr 1=4 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "x"

Example 7.11 CQL to RPN string attributes
In this example we allow any index to be passed to RPN as a use attribute.

Identifiers for prefixes used in this file. (index.*)
set.cql = info:srw/cql-context-set/1/cql-v1.1
set.rpn = http://bogus/rpn
set = http://bogus/rpn

The default index when none is specified by the query
index.cql.serverChoice = 1=any

index.rpn.* = 1=*
relation.eq = 2=3
structure.* = 4=1
position.any = 3=3

The http://bogus/rpn context set is also the default so we can make queries such as

title = a

which is converted to

@attr 2=3 @attr 4=1 @attr 3=3 @attr 1=title "a"

Example 7.12 CQL to RPN using Bath Profile
The file etc/pqf.properties has mappings from the Bath Profile and Dublin Core to RPN. If YAZ
is installed as a package it’s usually located in /usr/share/yaz/etc and part of the development
package, such as libyaz-dev.

7.1.3.5 CQL to XCQL conversion

Conversion from CQL to XCQL is trivial and does not require a mapping to be defined. There are three
functions to choose from depending on the way you wish to store the resulting output (XML buffer con-
taining XCQL).

int cql_to_xml_buf(struct cql_node *cn, char *out, int max);
void cql_to_xml(struct cql_node *cn,

void (*pr)(const char *buf, void *client_data),
void *client_data);

void cql_to_xml_stdio(struct cql_node *cn, FILE *f);

Function cql_to_xml_buf converts to XCQL and stores the result in a user-supplied buffer of a given
max size.

cql_to_xml writes the result in a user-defined output stream. cql_to_xml_stdio writes to a a file.

YAZ User’s Guide and Reference 83 / 186

7.1.3.6 PQF to CQL conversion

Conversion from PQF to CQL is offered by the two functions shown below. The former uses a generic
stream for result. The latter puts result in a WRBUF (string container).

#include <yaz/rpn2cql.h>

int cql_transform_rpn2cql_stream(cql_transform_t ct,
void (*pr)(const char *buf, void *client_data),
void *client_data,
Z_RPNQuery *q);

int cql_transform_rpn2cql_wrbuf(cql_transform_t ct,
WRBUF w,
Z_RPNQuery *q);

The configuration is the same as used in CQL to PQF conversions.

7.2 Object Identifiers

The basic YAZ representation of an OID is an array of integers, terminated with the value -1. This integer
is of type Odr_oid.

Fundamental OID operations and the type Odr_oid are defined in yaz/oid_util.h.

An OID can either be declared as a automatic variable or it can be allocated using the memory utilities or
ODR/NMEM. It’s guaranteed that an OID can fit in OID_SIZE integers.

Example 7.13 Create OID on stack
We can create an OID for the Bib-1 attribute set with:

Odr_oid bib1[OID_SIZE];
bib1[0] = 1;
bib1[1] = 2;
bib1[2] = 840;
bib1[3] = 10003;
bib1[4] = 3;
bib1[5] = 1;
bib1[6] = -1;

And OID may also be filled from a string-based representation using dots (.). This is achieved by the
function

int oid_dotstring_to_oid(const char *name, Odr_oid *oid);

This functions returns 0 if name could be converted; -1 otherwise.

Example 7.14 Using oid_oiddotstring_to_oid
We can fill the Bib-1 attribute set OID more easily with:

Odr_oid bib1[OID_SIZE];
oid_oiddotstring_to_oid("1.2.840.10003.3.1", bib1);

We can also allocate an OID dynamically on an ODR stream with:

Odr_oid *odr_getoidbystr(ODR o, const char *str);

This creates an OID from a string-based representation using dots. This function take an ODR stream as
parameter. This stream is used to allocate memory for the data elements, which is released on a subsequent
call to odr_reset() on that stream.

Example 7.15 Using odr_getoidbystr
We can create an OID for the Bib-1 attribute set with:

Odr_oid *bib1 = odr_getoidbystr(odr, "1.2.840.10003.3.1");

The function

char *oid_oid_to_dotstring(const Odr_oid *oid, char *oidbuf)

does the reverse of oid_oiddotstring_to_oid. It converts an OID to the string-based representation
using dots. The supplied char buffer oidbuf holds the resulting string and must be at least OID_STR_MAX
in size.

OIDs can be copied with oid_oidcpy which takes two OID lists as arguments. Alternatively, an OID
copy can be allocated on an ODR stream with:

Odr_oid *odr_oiddup(ODR odr, const Odr_oid *o);

OIDs can be compared with oid_oidcmp which returns zero if the two OIDs provided are identical;
non-zero otherwise.

7.2.1 OID database

From YAZ version 3 and later, the oident system has been replaced by an OID database. OID database is a
misnomer .. the old odient system was also a database.

The OID database is really just a map between named Object Identifiers (string) and their OID raw equiva-
lents. Most operations either convert from string to OID or other way around.

Unfortunately, whenever we supply a string we must also specify the OID class. The class is necessary
because some strings correspond to multiple OIDs. An example of such a string is Bib-1 which may
either be an attribute-set or a diagnostic-set.

Applications using the YAZ database should include yaz/oid_db.h.

A YAZ database handle is of type yaz_oid_db_t. Actually that’s a pointer. You need not deal with that.
YAZ has a built-in database which can be considered "constant" for most purposes. We can get hold of that
by using function yaz_oid_std.

YAZ User’s Guide and Reference 85 / 186

All functions with prefix yaz_string_to_oid converts from class + string to OID. We have variants
of this operation due to different memory allocation strategies.

All functions with prefix yaz_oid_to_string converts from OID to string + class.

Example 7.16 Create OID with YAZ DB
We can create an OID for the Bib-1 attribute set on the ODR stream odr with:

Odr_oid *bib1 =
yaz_string_to_oid_odr(yaz_oid_std(), CLASS_ATTSET, "Bib-1", odr);

This is more complex than using odr_getoidbystr. You would only use
yaz_string_to_oid_odr when the string (here Bib-1) is supplied by a user or configuration.

7.2.2 Standard OIDs

All the object identifiers in the standard OID database as returned by yaz_oid_std can be referenced
directly in a program as a constant OID. Each constant OID is prefixed with yaz_oid_ - followed by OID
class (lowercase) - then by OID name (normalized and lowercase).

See Appendix A for list of all object identifiers built into YAZ. These are declared in yaz/oid_std.h
but are included by yaz/oid_db.h as well.

Example 7.17 Use a built-in OID
We can allocate our own OID filled with the constant OID for Bib-1 with:

Odr_oid *bib1 = odr_oiddup(o, yaz_oid_attset_bib1);

7.3 Nibble Memory

Sometimes when you need to allocate and construct a large, interconnected complex of structures, it can
be a bit of a pain to release the associated memory again. For the structures describing the Z39.50 PDUs
and related structures, it is convenient to use the memory-management system of the ODR subsystem (see
Section 8.2). However, in some circumstances where you might otherwise benefit from using a simple
nibble-memory management system, it may be impractical to use odr_malloc() and odr_reset().
For this purpose, the memory manager which also supports the ODR streams is made available in the
NMEM module. The external interface to this module is given in the nmem.h file.

The following prototypes are given:

NMEM nmem_create(void);
void nmem_destroy(NMEM n);
void *nmem_malloc(NMEM n, size_t size);
void nmem_reset(NMEM n);
size_t nmem_total(NMEM n);
void nmem_init(void);
void nmem_exit(void);

The nmem_create() function returns a pointer to a memory control handle, which can be released again
by nmem_destroy() when no longer needed. The function nmem_malloc() allocates a block of
memory of the requested size. A call to nmem_reset() or nmem_destroy() will release all memory
allocated on the handle since it was created (or since the last call to nmem_reset(). The function
nmem_total() returns the number of bytes currently allocated on the handle.

The nibble-memory pool is shared amongst threads. POSIX mutexes and WIN32 Critical sections are
introduced to keep the module thread safe. Function nmem_init() initializes the nibble-memory library
and it is called automatically the first time the YAZ.DLL is loaded. YAZ uses function DllMain to achieve
this. You should not call nmem_init or nmem_exit unless you’re absolute sure what you’re doing. Note
that in previous YAZ versions you’d have to call nmem_init yourself.

7.4 Log

YAZ has evolved a fairly complex log system which should be useful both for debugging YAZ itself,
debugging applications that use YAZ, and for production use of those applications.

The log functions are declared in header yaz/log.h and implemented in src/log.c. Due to name
clash with syslog and some math utilities the logging interface has been modified as of YAZ 2.0.29. The
obsolete interface is still available in header file yaz/log.h. The key points of the interface are:

void yaz_log(int level, const char *fmt, ...)
void yaz_log_init(int level, const char *prefix, const char *name);
void yaz_log_init_file(const char *fname);
void yaz_log_init_level(int level);
void yaz_log_init_prefix(const char *prefix);
void yaz_log_time_format(const char *fmt);
void yaz_log_init_max_size(int mx);

int yaz_log_mask_str(const char *str);
int yaz_log_module_level(const char *name);

The reason for the whole log module is the yaz_log function. It takes a bitmask indicating the log levels,
a printf-like format string, and a variable number of arguments to log.

The log level is a bit mask, that says on which level(s) the log entry should be made, and optionally set
some behaviour of the logging. In the most simple cases, it can be one of YLOG_FATAL, YLOG_DEBUG,
YLOG_WARN, YLOG_LOG. Those can be combined with bits that modify the way the log entry is writ-
ten:YLOG_ERRNO, YLOG_NOTIME, YLOG_FLUSH. Most of the rest of the bits are deprecated, and
should not be used. Use the dynamic log levels instead.

Applications that use YAZ, should not use the LOG_LOG for ordinary messages, but should make use of
the dynamic loglevel system. This consists of two parts, defining the loglevel and checking it.

To define the log levels, the (main) program should pass a string to yaz_log_mask_str to define which
log levels are to be logged. This string should be a comma-separated list of log level names, and can contain
both hard-coded names and dynamic ones. The log level calculation starts with YLOG_DEFAULT_LEVEL
and adds a bit for each word it meets, unless the word starts with a ’-’, in which case it clears the bit.
If the string ’none’ is found, all bits are cleared. Typically this string comes from the command-
line, often identified by -v. The yaz_log_mask_str returns a log level that should be passed to
yaz_log_init_level for it to take effect.

YAZ User’s Guide and Reference 87 / 186

Each module should check what log bits should be used, by calling yaz_log_module_level with a
suitable name for the module. The name is cleared of a preceding path and an extension, if any, so it is
quite possible to use __FILE__ for it. If the name has been passed to yaz_log_mask_str, the routine
returns a non-zero bitmask, which should then be used in consequent calls to yaz_log. (It can also be tested,
so as to avoid unnecessary calls to yaz_log, in time-critical places, or when the log entry would take time
to construct.)

Yaz uses the following dynamic log levels: server, session, request, requestdetail for
the server functionality. zoom for the zoom client API. ztest for the simple test server. malloc,
nmem, odr, eventl for internal debugging of yaz itself. Of course, any program using yaz is welcome
to define as many new ones as it needs.

By default the log is written to stderr, but this can be changed by a call to yaz_log_init_file or
yaz_log_init. If the log is directed to a file, the file size is checked at every write, and if it exceeds the
limit given in yaz_log_init_max_size, the log is rotated. The rotation keeps one old version (with a
.1 appended to the name). The size defaults to 1GB. Setting it to zero will disable the rotation feature.

A typical yaz-log looks like this
13:23:14-23/11 yaz-ztest(1) [session] Starting session from tcp:127.0.0.1 ←↩

(pid=30968)
13:23:14-23/11 yaz-ztest(1) [request] Init from ’YAZ’ (81) (ver 2.0.28) ←↩

OK
13:23:17-23/11 yaz-ztest(1) [request] Search Z: @attrset Bib-1 foo OK:7 ←↩

hits
13:23:22-23/11 yaz-ztest(1) [request] Present: [1] 2+2 OK 2 records ←↩

returned
13:24:13-23/11 yaz-ztest(1) [request] Close OK

The log entries start with a time stamp. This can be omitted by setting the YLOG_NOTIME bit in the
loglevel. This way automatic tests can be hoped to produce identical log files, that are easy to diff. The
format of the time stamp can be set with yaz_log_time_format, which takes a format string just like
strftime.

Next in a log line comes the prefix, often the name of the program. For yaz-based servers, it can also contain
the session number. Then comes one or more logbits in square brackets, depending on the logging level
set by yaz_log_init_level and the loglevel passed to yaz_log_init_level. Finally comes the
format string and additional values passed to yaz_log

The log level YLOG_LOGLVL, enabled by the string loglevel, will log all the log-level affecting opera-
tions. This can come in handy if you need to know what other log levels would be useful. Grep the logfile
for [loglevel].

The log system is almost independent of the rest of YAZ, the only important dependence is of nmem, and
that only for using the semaphore definition there.

The dynamic log levels and log rotation were introduced in YAZ 2.0.28. At the same time, the log bit names
were changed from LOG_something to YLOG_something, to avoid collision with syslog.h.

7.5 MARC

YAZ provides a fast utility for working with MARC records. Early versions of the MARC utility only
allowed decoding of ISO2709. Today the utility may both encode - and decode to a variety of formats.

#include <yaz/marcdisp.h>

/* create handler */
yaz_marc_t yaz_marc_create(void);
/* destroy */
void yaz_marc_destroy(yaz_marc_t mt);

/* set XML mode YAZ_MARC_LINE, YAZ_MARC_SIMPLEXML, ... */
void yaz_marc_xml(yaz_marc_t mt, int xmlmode);
#define YAZ_MARC_LINE 0
#define YAZ_MARC_SIMPLEXML 1
#define YAZ_MARC_OAIMARC 2
#define YAZ_MARC_MARCXML 3
#define YAZ_MARC_ISO2709 4
#define YAZ_MARC_XCHANGE 5
#define YAZ_MARC_CHECK 6
#define YAZ_MARC_TURBOMARC 7
#define YAZ_MARC_JSON 8

/* supply iconv handle for character set conversion .. */
void yaz_marc_iconv(yaz_marc_t mt, yaz_iconv_t cd);

/* set debug level, 0=none, 1=more, 2=even more, .. */
void yaz_marc_debug(yaz_marc_t mt, int level);

/* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.
On success, result in *result with size *rsize. */
int yaz_marc_decode_buf(yaz_marc_t mt, const char *buf, int bsize,

const char **result, size_t *rsize);

/* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.
On success, result in WRBUF */

int yaz_marc_decode_wrbuf(yaz_marc_t mt, const char *buf,
int bsize, WRBUF wrbuf);

Note
The synopsis is just a basic subset of all functionality. Refer to the actual header file marcdisp.h for
details.

YAZ User’s Guide and Reference 89 / 186

A MARC conversion handle must be created by using yaz_marc_create and destroyed by calling
yaz_marc_destroy.

All other functions operate on a yaz_marc_t handle. The output is specified by a call to yaz_marc_xml.
The xmlmode must be one of

YAZ_MARC_LINE A simple line-by-line format suitable for display but not recommended for further
(machine) processing.

YAZ_MARC_MARCXML MARCXML.

YAZ_MARC_ISO2709 ISO2709 (sometimes just referred to as "MARC").

YAZ_MARC_XCHANGE MarcXchange.

YAZ_MARC_CHECK Pseudo format for validation only. Does not generate any real output except diag-
nostics.

YAZ_MARC_TURBOMARC XML format with same semantics as MARCXML but more compact and
geared towards fast processing with XSLT. Refer to Section 7.5.1 for more information.

YAZ_MARC_JSON MARC-in-JSON format.

The actual conversion functions are yaz_marc_decode_buf and yaz_marc_decode_wrbufwhich
decodes and encodes a MARC record. The former function operates on simple buffers, and stores the
resulting record in a WRBUF handle (WRBUF is a simple string type).

Example 7.18 Display of MARC record
The following program snippet illustrates how the MARC API may be used to convert a MARC record to
the line-by-line format:

void print_marc(const char *marc_buf, int marc_buf_size)
{

char *result; /* for result buf */
size_t result_len; /* for size of result */
yaz_marc_t mt = yaz_marc_create();
yaz_marc_xml(mt, YAZ_MARC_LINE);
yaz_marc_decode_buf(mt, marc_buf, marc_buf_size,

&result, &result_len);
fwrite(result, result_len, 1, stdout);
yaz_marc_destroy(mt); /* note that result is now freed... */

}

7.5.1 TurboMARC

TurboMARC is yet another XML encoding of a MARC record. The format was designed for fast processing
with XSLT.

https://www.loc.gov/standards/marcxml/
https://www.loc.gov/standards/iso25577/
https://rossfsinger.com/blog/2010/09/a-proposal-to-serialize-marc-in-json/

Applications like Pazpar2 uses XSLT to convert an XML encoded MARC record to an internal representa-
tion. This conversion mostly checks the tag of a MARC field to determine the basic rules in the conversion.
This check is costly when that tag is encoded as an attribute in MARCXML. By having the tag value as the
element instead, makes processing many times faster (at least for Libxslt).

TurboMARC is encoded as follows:

• Record elements is part of namespace "http://www.indexdata.com/turbomarc".

• A record is enclosed in element r.

• A collection of records is enclosed in element collection.

• The leader is encoded as element l with the leader content as its (text) value.

• A control field is encoded as element c concatenated with the tag value of the control field if the tag value
matches the regular expression [a-zA-Z0-9]*. If the tag value does not match the regular expression
[a-zA-Z0-9]* the control field is encoded as element c and attribute code will hold the tag value.
This rule ensures that in the rare cases where a tag value might result in a non-well-formed XML, then
YAZ will encode it as a coded attribute (as in MARCXML).

The control field content is the text value of this element. Indicators are encoded as attribute names i1,
i2, etc. and corresponding values for each indicator.

• A data field is encoded as element d concatenated with the tag value of the data field or using the attribute
code as described in the rules for control fields. The children of the data field element are subfield
elements. Each subfield element is encoded as s concatenated with the sub field code. The text of the
subfield element is the contents of the subfield. Indicators are encoded as attributes for the data field
element, similar to the encoding for control fields.

7.6 Retrieval Facility

YAZ version 2.1.20 or later includes a Retrieval facility tool which allows a SRU/Z39.50 to describe itself
and perform record conversions. The idea is the following:

• An SRU/Z39.50 client sends a retrieval request which includes a combination of the following parameters:
syntax (format), schema (or element set name).

• The retrieval facility is invoked with parameters in a server/proxy. The retrieval facility matches the
parameters a set of "supported" retrieval types. If there is no match, the retrieval signals an error (syntax
and / or schema not supported).

• For a successful match, the backend is invoked with the same or altered retrieval parameters (syntax,
schema). If a record is received from the backend, it is converted to the frontend name / syntax.

• The resulting record is sent back the client and tagged with the frontend syntax / schema.

The Retrieval facility is driven by an XML configuration. The configuration is neither Z39.50 ZeeRex or
SRU ZeeRex. But it should be easy to generate both of them from the XML configuration. (Unfortunately
the two versions of ZeeRex differ substantially in this regard.)

YAZ User’s Guide and Reference 91 / 186

7.6.1 Retrieval XML format

All elements should be covered by namespace http://indexdata.com/yaz . The root element node
must be retrievalinfo.

The retrievalinfo must include one or more retrieval elements. Each retrieval defines
specific combination of syntax, name and identifier supported by this retrieval service.

The retrieval element may include any of the following attributes:

syntax (REQUIRED) Defines the record syntax. Possible values is any of the names defined in YAZ’
OID database or a raw OID in (n.n ... n).

name (OPTIONAL) Defines the name of the retrieval format. This can be any string. For SRU, the value
is equivalent to schema (short-hand); for Z39.50 it’s equivalent to simple element set name. For YAZ
3.0.24 and later this name may be specified as a glob expression with operators * and ?.

identifier (OPTIONAL) Defines the URI schema name of the retrieval format. This can be any
string. For SRU, the value is equivalent to URI schema. For Z39.50, there is no equivalent.

The retrieval may include one backend element. If a backend element is given, it specifies how
the records are retrieved by some backend and how the records are converted from the backend to the
"frontend".

The attributes, name and syntax may be specified for the backend element. The semantics of these
attributes is equivalent to those for the retrieval. However, these values are passed to the "backend".

The backend element may include one or more conversion instructions (as children elements). The sup-
ported conversions are:

marc The marc element specifies a conversion to - and from ISO2709 encoded MARC and MAR-
CXML/MarcXchange. The following attributes may be specified:

inputformat (REQUIRED) Format of input. Supported values are marc (for ISO2709), xml
(MARCXML/MarcXchange) and json (MARC-in-JSON).

outputformat (REQUIRED) Format of output. Supported values are line (MARC line for-
mat); marcxml (for MARCXML), marc (ISO2709), turbomarc, marcxchange (for Mar-
cXchange), or json (MARC-in-JSON).

inputcharset (OPTIONAL) Encoding of input. For XML input formats, this need not be given,
but for ISO2709 based input formats, this should be set to the encoding used. For MARC21
records, a common inputcharset value would be marc-8.

Note
If inputformat is marc and inputcharset is marc-8, then effective inputcharset is UTF-8 if
leader position has value ’a’ (MARC21 rule).

outputcharset (OPTIONAL) Encoding of output. If outputformat is XML based, it is strongly
recommended to use utf-8.

https://www.loc.gov/standards/marcxml/
https://www.loc.gov/standards/marcxml/
https://rossfsinger.com/blog/2010/09/a-proposal-to-serialize-marc-in-json/
https://rossfsinger.com/blog/2010/09/a-proposal-to-serialize-marc-in-json/

leaderspec (OPTIONAL) Specifies a modification to the leader for the resulting output record.
The leaderspec is a comma separated list of pos=value pairs, where pos is an integer offset
(0 - 23) for leader. Value is either a quoted string or an integer (character value in decimal).
For example, to set leader at offset 9 to a, use 9=’a’. This has same effect as -l for yaz-
marcdump(1).

select The select selects one or more text nodes and decodes them as XML. The following attributes
may be specified:

path (REQUIRED) X-Path expression for selecting text nodes.

This conversion is available in YAZ 5.8.0 and later.

solrmarc The solrmarc decodes solrmarc records. It assumes that the input is pure solrmarc text (no
escaping) and will convert all sequences of the form #XX; to a single character of the hexadecimal
value as given by XX. The output, presumably, is a valid ISO2709 buffer.

This conversion is available in YAZ 5.0.21 and later.

xslt The xslt element specifies a conversion via XSLT. The following attributes may be specified:

stylesheet (REQUIRED) Stylesheet file.

In addition, the element can be configured as follows:

param (OPTIONAL) A param tag configures a parameter to be passed to the XSLT stylesheet.
Multiple param tags may be defined.

rdf-lookup The rdf-lookup element looks up BIBFRAME elements in some suitable service, for
example http://id.loc.gov/authorities/names and replaces the URIs for specified elements with URIs
it finds at that service. Its configuration consists of

debug (OPTIONAL) Attribute to the rdf-lookup tag to enable debug output. A value of "1"
makes the filter to add a XML comment next to each key it tried to look up, showing the URL,
the result, and timing. This is useful for debugging the configuration. The default is not to add
any comments.

timeout (OPTIONAL) Attribute of the rdf-lookup tag which defines timeout in seconds for
the HTTP based rdf-lookup.

namespace (OPTIONAL) A namespace tag declares a namespace to be used in the xpath
below. The tag requires two attributes: prefix and href.

lookup (REQUIRED) A section that defines one tag to be looked up, for example an author.The
xpath attribute (REQUIRED) specifies the path to the element(s).

key (REQUIRED) A tag withing the lookup tag specifies the value to be used in the lookup, for
example a name or an ID. It is a relative Xpath starting from the tag specified in the lookup.

server (OPTIONAL) Specifies the URL for server to use for the lookup. A %s is replaced by
the key value to be looked up. If not specified, defaults to the same as the previous lookup
section, or lacking one, to http://id.loc.gov/authorities/names/label/%s .
The method attribute can be used to specify the HTTP method to be used in this lookup. The
default is GET, and the useful alternative is HEAD.

http://id.loc.gov/authorities/names/label/%s

YAZ User’s Guide and Reference 93 / 186

See the example below.

This conversion is available in YAZ 5.19.0 and later.

7.6.2 Retrieval Facility Examples

Example 7.19 MARC21 backend
A typical way to use the retrieval facility is to enable XML for servers that only supports ISO2709 encoded
MARC21 records.

<retrievalinfo>
<retrieval syntax="usmarc" name="F"/>
<retrieval syntax="usmarc" name="B"/>
<retrieval syntax="xml" name="marcxml"

identifier="info:srw/schema/1/marcxml-v1.1">
<backend syntax="usmarc" name="F">

<marc inputformat="marc" outputformat="marcxml"
inputcharset="marc-8"/>

</backend>
</retrieval>
<retrieval syntax="xml" name="dc">
<backend syntax="usmarc" name="F">

<marc inputformat="marc" outputformat="marcxml"
inputcharset="marc-8"/>

<xslt stylesheet="MARC21slim2DC.xsl"/>
</backend>

</retrieval>
</retrievalinfo>

This means that our frontend supports:

• MARC21 F(ull) records.

• MARC21 B(rief) records.

• MARCXML records.

• Dublin core records.

Example 7.20 MARCXML backend
SRW/SRU and Solr backends return records in XML. If they return MARCXML or MarcXchange, the
retrieval module can convert those into ISO2709 formats, most commonly USMARC (AKA MARC21). In
this example, the backend returns MARCXML for schema="marcxml".

<retrievalinfo>
<retrieval syntax="usmarc">
<backend syntax="xml" name="marcxml">

<marc inputformat="xml" outputformat="marc"
outputcharset="marc-8"/>

</backend>
</retrieval>
<retrieval syntax="xml" name="marcxml"
identifier="info:srw/schema/1/marcxml-v1.1"/>
<retrieval syntax="xml" name="dc">
<backend syntax="xml" name="marcxml">

<xslt stylesheet="MARC21slim2DC.xsl"/>
</backend>

</retrieval>
</retrievalinfo>

This means that our frontend supports:

• MARC21 records (any element set name) in MARC-8 encoding.

• MARCXML records for element-set=marcxml

• Dublin core records for element-set=dc.

Example 7.21 RDF-lookup backend
This is a minimal example of the backend configuration for the rdf-lookup. It could well be used with
some heavy xslt transforms that make BIBFRAME records out of MarxXml.

<backend syntax="xml" name="rdf-lookup">
<rdf-lookup debug="1" timeout="10">

<namespace prefix="bf" href="http://id.loc.gov/ontologies/ ←↩
bibframe/" />

<namespace prefix="bflc" href="http://id.loc.gov/ontologies/ ←↩
bibframe/lc-extensions/"/>

<lookup xpath="//bf:contribution/bf:Contribution/bf:agent/bf: ←↩
Agent">

<key field="bflc:name00MatchKey"/>
<key field="bflc:name01MatchKey"/>
<key field="bflc:name11MatchKey"/>
<server url="http://id.loc.gov/authorities/names/label/%s" ←↩

method="HEAD"/>
</lookup>

</rdf-lookup>
</backend>

The debug=1 attribute tells the filter to add XML comments to the key nodes that indicate what lookup it
tried to do, how it went, and how long it took.
The namespace prefix bf: is defined in the namespace tags. These namespaces are used in the xpath
expressions in the lookup sections.
The lookup tag specifies one tag to be looked up. The xpath attribute defines which node to modify. It
may make use of the namespace definitions above.
The server tag gives the URL to be used for the lookup. A %s in the string will get replaced by the key
value. If there is no server tag, the one from the preceding lookup section is used, and if there is no

YAZ User’s Guide and Reference 95 / 186

previous section, the id.loc.gov address is used as a default. The default is to make a GET request, this
example uses HEAD

7.6.3 API

It should be easy to use the retrieval systems from applications. Refer to the headers yaz/retrieval.h
and yaz/record_conv.h.

7.7 Sorting

This chapter describes sorting and how it is supported in YAZ. Sorting applies to a result-set. The Z39.50
sorting facility takes one or more input result-sets and one result-set as output. The most simple case is that
the input-set is the same as the output-set.

Z39.50 sorting has a separate APDU (service) that is, thus, performed following a search (two phases).

In SRU/Solr, however, the model is different. Here, sorting is specified during the search operation. Note,
however, that SRU might perform sort as separate search, by referring to an existing result-set in the query
(result-set reference).

7.7.1 Using the Z39.50 sort service

yaz-client and the ZOOM API support the Z39.50 sort facility. In any case the sort sequence or sort cri-
teria is using a string notation. This notation is a one-line notation suitable for being manually entered or
generated, and allows for easy logging (one liner). For the ZOOM API, the sort is specified in the call to
ZOOM_query_sortby function. For yaz-client the sort is performed and specified using the sort and sort+
commands. For description of the sort criteria notation refer to the sort command in the yaz-client manual.

The ZOOM API might choose one of several sort strategies for sorting. Refer to Table 3.2.

7.7.2 Type-7 sort

Type-7 sort is an extension to the Bib-1 based RPN query where the sort specification is embedded as an
Attribute-Plus-Term.

The objectives for introducing Type-7 sorting is that it allows a client to perform sorting even if it does
not implement/support Z39.50 sort. Virtually all Z39.50 client software supports RPN queries. It also may
improve performance because the sort criteria is specified along with the search query.

The sort is triggered by the presence of type 7, and the value of type 7 specifies the sortRelation . The
value for type 7 is 1 for ascending and 2 for descending. For the sortElement only the generic part is
handled. If generic sortKey is of type sortField, then attribute type 1 is present and the value is sortField
(InternationalString). If generic sortKey is of type sortAttributes, then the attributes in the list are used.
Generic sortKey of type elementSpec is not supported.

The term in the sorting Attribute-Plus-Term combo should hold an integer. The value is 0 for primary
sorting criteria, 1 for second criteria, etc.

http://www.loc.gov/z3950/agency/markup/05.html#3.2.7
http://www.loc.gov/z3950/agency/markup/05.html#3.2.7
http://www.loc.gov/z3950/agency/asn1.html#SortKeySpec
http://www.loc.gov/z3950/agency/asn1.html#SortElement

7.8 Facets

YAZ supports facets in the Solr, SRU 2.0 and Z39.50 protocols.

Like Type-1/RPN, YAZ supports a string notation for specifying facets. This notataion maps straight to
facets.asn. The notation is parsed by function yaz_pqf_parse_facet_list defined in header yaz/
pquery.h.

For ZOOM C the facets are specified by option "facets". For yaz-client, the ’facets’ command is used.

The grammar of this specification is as follows:

facet-spec ::= facet-list

facet-list ::= facet-list ’,’ attr-spec | attr-spec

attr-spec ::= attr-spec ’@attr’ string | ’@attr’ string

The notation is inspired by PQF. The string following ’@attr’ must not include blanks and is of the form
type=value, where type is an integer and value is a string or an integer.

There is no formal facets attribute set (it is not given in the protocol by the facets, although it could). The
following types apply:

Type Description
1 Field-name. This is often a string, e.g. "Author", "Year", etc.

2
Sort order. Value should be an integer. Value 0: count descending (frequency).
Value 1: alpha ascending.

3 Number of terms requested.
4 Start offset (starting from 1)

Table 7.4: Facet attributes

YAZ User’s Guide and Reference 97 / 186

Chapter 8

The ODR Module

8.1 Introduction

ODR is the BER-encoding/decoding subsystem of YAZ. Care has been taken to isolate ODR from the rest
of the package - specifically from the transport interface. ODR may be used in any context where basic
ASN.1/BER representations are used.

If you are only interested in writing a Z39.50 implementation based on the PDUs that are already provided
with YAZ, you only need to concern yourself with the section on managing ODR streams (Section 8.2).
Only if you need to implement ASN.1 beyond that which has been provided, should you worry about the
second half of the documentation (Section 8.3). If you use one of the higher-level interfaces, you can skip
this section entirely.

This is important, so we’ll repeat it for emphasis: You do not need to read Section 8.3 to implement Z39.50
with YAZ.

If you need a part of the protocol that isn’t already in YAZ, you should contact the authors before going to
work on it yourself: We might already be working on it. Conversely, if you implement a useful part of the
protocol before us, we’d be happy to include it in a future release.

8.2 Using ODR

8.2.1 ODR Streams

Conceptually, the ODR stream is the source of encoded data in the decoding mode; when encoding, it is the
receptacle for the encoded data. Before you can use an ODR stream it must be allocated. This is done with
the function

ODR odr_createmem(int direction);

The odr_createmem() function takes as argument one of three manifest constants: ODR_ENCODE,
ODR_DECODE, or ODR_PRINT. An ODR stream can be in only one mode - it is not possible to change its

mode once it’s selected. Typically, your program will allocate at least two ODR streams - one for decoding,
and one for encoding.

When you’re done with the stream, you can use

void odr_destroy(ODR o);

to release the resources allocated for the stream.

8.2.2 Memory Management

Two forms of memory management take place in the ODR system. The first one, which has to do with
allocating little bits of memory (sometimes quite large bits of memory, actually) when a protocol package
is decoded, and turned into a complex of interlinked structures. This section deals with this system, and
how you can use it for your own purposes. The next section deals with the memory management which is
required when encoding data - to make sure that a large enough buffer is available to hold the fully encoded
PDU.

The ODR module has its own memory management system, which is used whenever memory is required.
Specifically, it is used to allocate space for data when decoding incoming PDUs. You can use the memory
system for your own purposes, by using the function

void *odr_malloc(ODR o, size_t size);

You can’t use the normal free(2) routine to free memory allocated by this function, and ODR doesn’t
provide a parallel function. Instead, you can call

void odr_reset(ODR o);

when you are done with the memory: Everything allocated since the last call to odr_reset() is released.
The odr_reset() call is also required to clear up an error condition on a stream.

The function

size_t odr_total(ODR o);

returns the number of bytes allocated on the stream since the last call to odr_reset().

The memory subsystem of ODR is fairly efficient at allocating and releasing little bits of memory. Rather
than managing the individual, small bits of space, the system maintains a free-list of larger chunks of
memory, which are handed out in small bits. This scheme is generally known as a nibble-memory system.
It is very useful for maintaining short-lived constructions such as protocol PDUs.

If you want to retain a bit of memory beyond the next call to odr_reset(), you can use the function

YAZ User’s Guide and Reference 99 / 186

ODR_MEM odr_extract_mem(ODR o);

This function will give you control of the memory recently allocated on the ODR stream. The memory will
live (past calls to odr_reset()), until you call the function

void odr_release_mem(ODR_MEM p);

The opaque ODR_MEM handle has no other purpose than referencing the memory block for you until you
want to release it.

You can use odr_extract_mem() repeatedly between allocating data, to retain individual control of
separate chunks of data.

8.2.3 Encoding and Decoding Data

When encoding data, the ODR stream will write the encoded octet string in an internal buffer. To retrieve
the data, use the function

char *odr_getbuf(ODR o, int *len, int *size);

The integer pointed to by len is set to the length of the encoded data, and a pointer to that data is returned.
*size is set to the size of the buffer (unless size is null, signaling that you are not interested in the size).
The next call to a primitive function using the same ODR stream will overwrite the data, unless a different
buffer has been supplied using the call

void odr_setbuf(ODR o, char *buf, int len, int can_grow);

which sets the encoding (or decoding) buffer used by o to buf, using the length len. Before a call to
an encoding function, you can use odr_setbuf() to provide the stream with an encoding buffer of
sufficient size (length). The can_grow parameter tells the encoding ODR stream whether it is allowed
to use realloc(2) to increase the size of the buffer when necessary. The default condition of a new
encoding stream is equivalent to the results of calling

odr_setbuf(stream, 0, 0, 1);

In this case, the stream will allocate and reallocate memory as necessary. The stream reallocates memory
by repeatedly doubling the size of the buffer - the result is that the buffer will typically reach its maximum,
working size with only a small number of reallocation operations. The memory is freed by the stream when
the latter is destroyed, unless it was assigned by the user with the can_grow parameter set to zero (in this
case, you are expected to retain control of the memory yourself).

To assume full control of an encoded buffer, you must first call odr_getbuf() to fetch the buffer and
its length. Next, you should call odr_setbuf() to provide a different buffer (or a null pointer) to the
stream. In the simplest case, you will reuse the same buffer over and over again, and you will just need to
call odr_getbuf() after each encoding operation to get the length and address of the buffer. Note that
the stream may reallocate the buffer during an encoding operation, so it is necessary to retrieve the correct
address after each encoding operation.

It is important to realize that the ODR stream will not release this memory when you call odr_reset():
It will merely update its internal pointers to prepare for the encoding of a new data value. When the stream is
released by the odr_destroy() function, the memory given to it by odr_setbuf will be released only
if the can_grow parameter to odr_setbuf() was nonzero. The can_grow parameter, in other words,
is a way of signaling who is to own the buffer, you or the ODR stream. If you never call odr_setbuf()
on your encoding stream, which is typically the case, the buffer allocated by the stream will belong to the
stream by default.

When you wish to decode data, you should first call odr_setbuf(), to tell the decoding stream where
to find the encoded data, and how long the buffer is (the can_grow parameter is ignored by a decod-
ing stream). After this, you can call the function corresponding to the data you wish to decode (e.g.
odr_integer() odr z_APDU()).

Example 8.1 Encoding and decoding functions

int odr_integer(ODR o, Odr_int **p, int optional, const char *name);

int z_APDU(ODR o, Z_APDU **p, int optional, const char *name);

If the data is absent (or doesn’t match the tag corresponding to the type), the return value will be either 0 or
1 depending on the optional flag. If optional is 0 and the data is absent, an error flag will be raised in
the stream, and you’ll need to call odr_reset() before you can use the stream again. If optional is
nonzero, the pointer pointed to/ by p will be set to the null value, and the function will return 1. The name
argument is used to pretty-print the tag in question. It may be set to NULL if pretty-printing is not desired.

If the data value is found where it’s expected, the pointer pointed to by the p argument will be set to point
to the decoded type. The space for the type will be allocated and owned by the ODR stream, and it will live
until you call odr_reset() on the stream. You cannot use free(2) to release the memory. You can
decode several data elements (by repeated calls to odr_setbuf() and your decoding function), and new
memory will be allocated each time. When you do call odr_reset(), everything decoded since the last
call to odr_reset() will be released.

Example 8.2 Encoding and decoding of an integer
The use of the double indirection can be a little confusing at first (its purpose will become clear later on,
hopefully), so an example is in order. We’ll encode an integer value, and immediately decode it again using
a different stream. A useless, but informative operation.

void do_nothing_useful(Odr_int value)
{

ODR encode, decode;
Odr_int *valp, *resvalp;
char *bufferp;

YAZ User’s Guide and Reference 101 / 186

int len;

/* allocate streams */
if (!(encode = odr_createmem(ODR_ENCODE)))

return;
if (!(decode = odr_createmem(ODR_DECODE)))

return;

valp = &value;
if (odr_integer(encode, &valp, 0, 0) == 0)
{

printf("encoding went bad\n");
return;

}
bufferp = odr_getbuf(encode, &len, 0);
printf("length of encoded data is %d\n", len);

/* now let’s decode the thing again */
odr_setbuf(decode, bufferp, len, 0);
if (odr_integer(decode, &resvalp, 0, 0) == 0)
{

printf("decoding went bad\n");
return;

}
/* ODR_INT_PRINTF format for printf (such as %d) */
printf("the value is " ODR_INT_PRINTF "\n", *resvalp);

/* clean up */
odr_destroy(encode);
odr_destroy(decode);

}

This looks like a lot of work, offhand. In practice, the ODR streams will typically be allocated once, in the
beginning of your program (or at the beginning of a new network session), and the encoding and decoding
will only take place in a few, isolated places in your program, so the overhead is quite manageable.

8.2.4 Printing

When an ODR stream is created of type ODR_PRINT the ODR module will print the contents of a PDU
in a readable format. By default output is written to the stderr stream. This behavior can be changed,
however, by calling the function

odr_setprint(ODR o, FILE *file);

before encoders or decoders are being invoked. It is also possible to direct the output to a buffer (or indeed
another file), by using the more generic mechanism:

void odr_set_stream(ODR o, void *handle,
void (*stream_write)(ODR o, void *handle, int type,

const char *buf, int len),
void (*stream_close)(void *handle));

Here the user provides an opaque handle and two handlers, stream_write for writing, and stream_close
which is supposed to close/free resources associated with handle. The stream_close handler is optional
and if NULL for the function is provided, it will not be invoked. The stream_write takes the ODR han-
dle as parameter, the user-defined handle, a type ODR_OCTETSTRING, ODR_VISIBLESTRING which
indicates the type of contents being written.

Another utility useful for diagnostics (error handling) or as part of the printing facilities is:

const char **odr_get_element_path(ODR o);

which returns a list of current elements that ODR deals with at the moment. For the returned array, say ar,
then ar[0] is the top level element, ar[n] is the last. The last element has the property that ar[n+1]
== NULL.

Example 8.3 Element Path for record
For a database record part of a PresentResponse the array returned by odr_get_element is
presentResponse, databaseOrSurDiagnostics, ?, record, ?, databaseRecord . The
question mark appears due to unnamed constructions.

8.2.5 Diagnostics

The encoding/decoding functions all return 0 when an error occurs. Until you call odr_reset(), you
cannot use the stream again, and any function called will immediately return 0.

To provide information to the programmer or administrator, the function

void odr_perror(ODR o, char *message);

is provided, which prints the message argument to stderr along with an error message from the stream.

You can also use the function

int odr_geterror(ODR o);

to get the current error number from the screen. The number will be one of these constants:

The character string array

char *odr_errlist[]

can be indexed by the error code to obtain a human-readable representation of the problem.

YAZ User’s Guide and Reference 103 / 186

code Description
OMEMORY Memory allocation failed.

OSYSERR
A system- or library call has failed. The standard
diagnostic variable errno should be examined
to determine the actual error.

OSPACE

No more space for encoding. This will only
occur when the user has explicitly provided a
buffer for an encoding stream without allowing
the system to allocate more space.

OREQUIRED
This is a common protocol error; A required data
element was missing during encoding or
decoding.

OUNEXPECTED
An unexpected data element was found during
decoding.

OOTHER

Other error. This is typically an indication of
misuse of the ODR system by the programmer,
and also that the diagnostic system isn’t as good
as it should be, yet.

Table 8.1: ODR Error codes

8.2.6 Summary and Synopsis

#include <yaz/odr.h>

ODR odr_createmem(int direction);

void odr_destroy(ODR o);

void odr_reset(ODR o);

char *odr_getbuf(ODR o, int *len, int *size);

void odr_setbuf(ODR o, char *buf, int len, int can_grow);

void *odr_malloc(ODR o, int size);

NMEM odr_extract_mem(ODR o);

int odr_geterror(ODR o);

void odr_perror(ODR o, const char *message);

extern char *odr_errlist[];

8.3 Programming with ODR

The API of ODR is designed to reflect the structure of ASN.1, rather than BER itself. Future releases may
be able to represent data in other external forms.

Tip
There is an ASN.1 tutorial available at this site. This site also has standards for ASN.1 (X.680) and BER
(X.690) online.

The ODR interface is based loosely on that of the Sun Microsystems XDR routines. Specifically, each
function which corresponds to an ASN.1 primitive type has a dual function. Depending on the settings of
the ODR stream which is supplied as a parameter, the function may be used either to encode or decode
data. The functions that can be built using these primitive functions, to represent more complex data types,
share this quality. The result is that you only have to enter the definition for a type once - and you have
the functionality of encoding, decoding (and pretty-printing) all in one unit. The resulting C source code is
quite compact, and is a pretty straightforward representation of the source ASN.1 specification.

In many cases, the model of the XDR functions works quite well in this role. In others, it is less elegant.
Most of the hassle comes from the optional SEQUENCE members which don’t exist in XDR.

8.3.1 The Primitive ASN.1 Types

ASN.1 defines a number of primitive types (many of which correspond roughly to primitive types in struc-
tured programming languages, such as C).

8.3.1.1 INTEGER

The ODR function for encoding or decoding (or printing) the ASN.1 INTEGER type looks like this:

int odr_integer(ODR o, Odr_int **p, int optional, const char *name);

The Odr_int is just a simple integer.

This form is typical of the primitive ODR functions. They are named after the type of data that they encode
or decode. They take an ODR stream, an indirect reference to the type in question, and an optional flag
(corresponding to the OPTIONAL keyword of ASN.1) as parameters. They all return an integer value of
either one or zero. When you use the primitive functions to construct encoders for complex types of your
own, you should follow this model as well. This ensures that your new types can be reused as elements in
yet more complex types.

The o parameter should obviously refer to a properly initialized ODR stream of the right type (encoding/de-
coding/printing) for the operation that you wish to perform.

When encoding or printing, the function first looks at * p. If * p (the pointer pointed to by p) is a null
pointer, this is taken to mean that the data element is absent. If the optional parameter is nonzero, the

https://www.itu.int/en/ITU-T/asn1/Pages/Tutorial.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx

YAZ User’s Guide and Reference 105 / 186

function will return one (signifying success) without any further processing. If the optional is zero, an
internal error flag is set in the ODR stream, and the function will return 0. No further operations can be
carried out on the stream without a call to the function odr_reset().

If *p is not a null pointer, it is expected to point to an instance of the data type. The data will be subjected
to the encoding rules, and the result will be placed in the buffer held by the ODR stream.

The other ASN.1 primitives have similar functions that operate in similar manners:

8.3.1.2 BOOLEAN

int odr_bool(ODR o, Odr_bool **p, int optional, const char *name);

8.3.1.3 REAL

Not defined.

8.3.1.4 NULL

int odr_null(ODR o, Odr_null **p, int optional, const char *name);

In this case, the value of **p is not important. If *p is different from the null pointer, the null value is
present, otherwise it’s absent.

8.3.1.5 OCTET STRING

typedef struct odr_oct
{

unsigned char *buf;
int len;

} Odr_oct;

int odr_octetstring(ODR o, Odr_oct **p, int optional,
const char *name);

The buf field should point to the character array that holds the octetstring. The len field holds the actual
length. The character array need not be null-terminated.

To make things a little easier, an alternative is given for string types that are not expected to contain embed-
ded NULL characters (e.g. VisibleString):

int odr_cstring(ODR o, char **p, int optional, const char *name);

which encodes or decodes between OCTETSTRING representations and null-terminated C strings.

Functions are provided for the derived string types, e.g.:

int odr_visiblestring(ODR o, char **p, int optional,
const char *name);

8.3.1.6 BIT STRING

int odr_bitstring(ODR o, Odr_bitmask **p, int optional,
const char *name);

The opaque type Odr_bitmask is only suitable for holding relatively brief bit strings, e.g. for options
fields, etc. The constant ODR_BITMASK_SIZE multiplied by 8 gives the maximum possible number of
bits.

A set of macros are provided for manipulating the Odr_bitmask type:

void ODR_MASK_ZERO(Odr_bitmask *b);

void ODR_MASK_SET(Odr_bitmask *b, int bitno);

void ODR_MASK_CLEAR(Odr_bitmask *b, int bitno);

int ODR_MASK_GET(Odr_bitmask *b, int bitno);

The functions are modeled after the manipulation functions that accompany the fd_set type used by the
select(2) call. ODR_MASK_ZERO should always be called first on a new bitmask, to initialize the bits
to zero.

8.3.1.7 OBJECT IDENTIFIER

int odr_oid(ODR o, Odr_oid **p, int optional, const char *name);

The C OID representation is simply an array of integers, terminated by the value -1 (the Odr_oid type is
synonymous with the short type). We suggest that you use the OID database module (see Section 7.2.1)
to handle object identifiers in your application.

YAZ User’s Guide and Reference 107 / 186

8.3.2 Tagging Primitive Types

The simplest way of tagging a type is to use the odr_implicit_tag() or odr_explicit_tag()
macros:

int odr_implicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

int odr_explicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

To create a type derived from the integer type by implicit tagging, you might write:

MyInt ::= [210] IMPLICIT INTEGER

In the ODR system, this would be written like:

int myInt(ODR o, Odr_int **p, int optional, const char *name)
{

return odr_implicit_tag(o, odr_integer, p,
ODR_CONTEXT, 210, optional, name);

}

The function myInt() can then be used like any of the primitive functions provided by ODR. Note that the
behavior of odr_explicit_tag() and odr_implicit_tag() macros act exactly the same as the
functions they are applied to - they respond to error conditions, etc, in the same manner - they simply have
three extra parameters. The class parameter may take one of the values: ODR_CONTEXT, ODR_PRIVATE,
ODR_UNIVERSAL, or /ODR_APPLICATION.

8.3.3 Constructed Types

Constructed types are created by combining primitive types. The ODR system only implements the SE-
QUENCE and SEQUENCE OF constructions (although adding the rest of the container types should be
simple enough, if the need arises).

For implementing SEQUENCEs, the functions

int odr_sequence_begin(ODR o, void *p, int size, const char *name);
int odr_sequence_end(ODR o);

are provided.

The odr_sequence_begin() function should be called in the beginning of a function that implements
a SEQUENCE type. Its parameters are the ODR stream, a pointer (to a pointer to the type you’re imple-
menting), and the size of the type (typically a C structure). On encoding, it returns 1 if * p is a null
pointer. The size parameter is ignored. On decoding, it returns 1 if the type is found in the data stream.
size bytes of memory are allocated, and *p is set to point to this space. The odr_sequence_end()
is called at the end of the complex function. Assume that a type is defined like this:

MySequence ::= SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

}

The corresponding ODR encoder/decoder function and the associated data structures could be written like
this:

typedef struct MySequence
{

Odr_int *intval;
Odr_bool *boolval;

} MySequence;

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o);

}

Note the 1 in the call to odr_bool(), to mark that the sequence member is optional. If either of the
member types had been tagged, the macros odr_implicit_tag() or odr_explicit_tag() could
have been used. The new function can be used exactly like the standard functions provided with ODR. It
will encode, decode or pretty-print a data value of the MySequence type. We like to name types with an
initial capital, as done in ASN.1 definitions, and to name the corresponding function with the first character
of the name in lower case. You could, of course, name your structures, types, and functions any way you
please - as long as you’re consistent, and your code is easily readable. odr_ok is just that - a predicate that
returns the state of the stream. It is used to ensure that the behavior of the new type is compatible with the
interface of the primitive types.

8.3.4 Tagging Constructed Types

Note
See Section 8.3.2 for information on how to tag the primitive types, as well as types that are already
defined.

8.3.4.1 Implicit Tagging

Assume the type above had been defined as

MySequence ::= [10] IMPLICIT SEQUENCE {
intval INTEGER,

YAZ User’s Guide and Reference 109 / 186

boolval BOOLEAN OPTIONAL
}

You would implement this in ODR by calling the function

int odr_implicit_settag(ODR o, int class, int tag);

which overrides the tag of the type immediately following it. The macro odr_implicit_tag() works
by calling odr_implicit_settag() immediately before calling the function pointer argument. Your
type function could look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_implicit_settag(o, ODR_CONTEXT, 10) == 0 ||
odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o);

}

The definition of the structure MySequence would be the same.

8.3.4.2 Explicit Tagging

Explicit tagging of constructed types is a little more complicated, since you are in effect adding a level of
construction to the data.

Assume the definition:

MySequence ::= [10] IMPLICIT SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

}

Since the new type has an extra level of construction, two new functions are needed to encapsulate the base
type:

int odr_constructed_begin(ODR o, void *p, int class, int tag,
const char *name);

int odr_constructed_end(ODR o);

Assume that the IMPLICIT in the type definition above were replaced with EXPLICIT (or that the IM-
PLICIT keyword was simply deleted, which would be equivalent). The structure definition would look the
same, but the function would look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_constructed_begin(o, p, ODR_CONTEXT, 10, name) == 0)
return optional && odr_ok(o);

if (o->direction == ODR_DECODE)

*p = odr_malloc(o, sizeof(**p));
if (odr_sequence_begin(o, p, sizeof(**p), 0) == 0)
{

p = 0; / this is almost certainly a protocol error */
return 0;

}
return

odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o) &&
odr_constructed_end(o);

}

Notice that the interface here gets kind of nasty. The reason is simple: Explicitly tagged, constructed
types are fairly rare in the protocols that we care about, so the aesthetic annoyance (not to mention the
dangers of a cluttered interface) is less than the time that would be required to develop a better interface.
Nevertheless, it is far from satisfying, and it’s a point that will be worked on in the future. One option for you
would be to simply apply the odr_explicit_tag() macro to the first function, and not have to worry
about odr_constructed_* yourself. Incidentally, as you might have guessed, the odr_sequence_
functions are themselves implemented using the /odr_constructed_ functions.

8.3.5 SEQUENCE OF

To handle sequences (arrays) of a specific type, the function

int odr_sequence_of(ODR o, int (*fun)(ODR o, void *p, int optional),
void *p, int *num, const char *name);

The fun parameter is a pointer to the decoder/encoder function of the type. p is a pointer to an array of
pointers to your type. num is the number of elements in the array.

Assume a type

MyArray ::= SEQUENCE OF INTEGER

The C representation might be

typedef struct MyArray
{

int num_elements;
Odr_int **elements;

} MyArray;

YAZ User’s Guide and Reference 111 / 186

And the function might look like

int myArray(ODR o, MyArray **p, int optional, const char *name)
{

if (o->direction == ODR_DECODE)

*p = odr_malloc(o, sizeof(**p));
if (odr_sequence_of(o, odr_integer, &(*p)->elements,

&(*p)->num_elements, name))
return 1;

*p = 0;
return optional && odr_ok(o);

}

8.3.6 CHOICE Types

The choice type is used fairly often in some ASN.1 definitions, so some work has gone into streamlining
its interface.

CHOICE types are handled by the function:

int odr_choice(ODR o, Odr_arm arm[], void *p, void *whichp,
const char *name);

The arm array is used to describe each of the possible types that the CHOICE type may assume. Internally
in your application, the CHOICE type is represented as a discriminated union. That is, a C union accom-
panied by an integer (or enum) identifying the active ’arm’ of the union. whichp is a pointer to the union
discriminator. When encoding, it is examined to determine the current type. When decoding, it is set to
reference the type that was found in the input stream.

The Odr_arm type is defined thus:

typedef struct odr_arm
{

int tagmode;
int class;
int tag;
int which;
Odr_fun fun;
char *name;

} Odr_arm;

The interpretation of the fields are:

tagmode Either ODR_IMPLICIT, ODR_EXPLICIT, or ODR_NONE (-1) to mark no tagging.

which The value of the discriminator that corresponds to this CHOICE element. Typically, it will be a
#defined constant, or an enum member.

fun A pointer to a function that implements the type of the CHOICE member. It may be either a standard
ODR type or a type defined by yourself.

name Name of tag.

A handy way to prepare the array for use by the odr_choice() function is to define it as a static,
initialized array in the beginning of your decoding/encoding function. Assume the type definition:

MyChoice ::= CHOICE {
untagged INTEGER,
tagged [99] IMPLICIT INTEGER,
other BOOLEAN

}

Your C type might look like

typedef struct MyChoice
{

enum
{

MyChoice_untagged,
MyChoice_tagged,
MyChoice_other

} which;
union
{

Odr_int *untagged;
Odr_int *tagged;
Odr_bool *other;

} u;
};

And your function could look like this:

int myChoice(ODR o, MyChoice **p, int optional, const char *name)
{

static Odr_arm arm[] =
{

{-1, -1, -1, MyChoice_untagged, odr_integer, "untagged"},
{ODR_IMPLICIT, ODR_CONTEXT, 99, MyChoice_tagged, odr_integer,
"tagged"},
{-1, -1, -1, MyChoice_other, odr_boolean, "other"},
{-1, -1, -1, -1, 0}

};

if (o->direction == ODR_DECODE)

*p = odr_malloc(o, sizeof(**p);
else if (!*p)

return optional && odr_ok(o);

if (odr_choice(o, arm, &(*p)->u, &(*p)->which), name)

YAZ User’s Guide and Reference 113 / 186

return 1;

*p = 0;
return optional && odr_ok(o);

}

In some cases (say, a non-optional choice which is a member of a sequence), you can "embed" the union
and its discriminator in the structure belonging to the enclosing type, and you won’t need to fiddle with
memory allocation to create a separate structure to wrap the discriminator and union.

The corresponding function is somewhat nicer in the Sun XDR interface. Most of the complexity of this
interface comes from the possibility of declaring sequence elements (including CHOICEs) optional.

The ASN.1 specifications naturally require that each member of a CHOICE have a distinct tag, so they can
be told apart on decoding. Sometimes it can be useful to define a CHOICE that has multiple types that
share the same tag. You’ll need some other mechanism, perhaps keyed to the context of the CHOICE type.
In effect, we would like to introduce a level of context-sensitiveness to our ASN.1 specification. When
encoding an internal representation, we have no problem, as long as each CHOICE member has a distinct
discriminator value. For decoding, we need a way to tell the choice function to look for a specific arm of
the table. The function

void odr_choice_bias(ODR o, int what);

provides this functionality. When called, it leaves a notice for the next call to odr_choice() to be called
on the decoding stream o, that only the arm entry with a which field equal to what should be tried.

The most important application (perhaps the only one, really) is in the definition of application-specific EX-
TERNAL encoders/decoders which will automatically decode an ANY member given the direct or indirect
reference.

8.4 Debugging

The protocol modules are suffering somewhat from a lack of diagnostic tools at the moment. Specifically
ways to pretty-print PDUs that aren’t recognized by the system. We’ll include something to this end in
a not-too-distant release. In the meantime, what we do when we get packages we don’t understand is to
compile the ODR module with ODR_DEBUG defined. This causes the module to dump tracing information
as it processes data units. With this output and the protocol specification (Z39.50), it is generally fairly easy
to see what goes wrong.

YAZ User’s Guide and Reference 115 / 186

Chapter 9

The COMSTACK Module

9.1 Synopsis (blocking mode)

COMSTACK stack;
char *buf = 0;
int size = 0, length_incoming;
char server_address_str[] = "localhost:9999";
void *server_address_ip;
int status;

char *protocol_package = "GET / HTTP/1.0\r\n\r\n";
int protocol_package_length = strlen(protocol_package);

stack = cs_create(tcpip_type, 1, PROTO_HTTP);
if (!stack) {

perror("cs_create"); /* use perror() here since we have no stack ←↩
yet */

return -1;
}

server_address_ip = cs_straddr(stack, server_address_str);
if (!server_address_ip) {

fprintf(stderr, "cs_straddr: address could not be resolved\n");
return -1;

}

status = cs_connect(stack, server_address_ip);
if (status) {

fprintf(stderr, "cs_connect: %s\n", cs_strerror(stack));
return -1;

}

status = cs_rcvconnect(stack);
if (status) {

fprintf(stderr, "cs_rcvconnect: %s\n", cs_strerror(stack));

return -1;
}

status = cs_put(stack, protocol_package, protocol_package_length);
if (status) {

fprintf(stderr, "cs_put: %s\n", cs_strerror(stack));
return -1;

}

/* Now get a response */
length_incoming = cs_get(stack, &buf, &size);
if (!length_incoming) {

fprintf(stderr, "Connection closed\n");
return -1;

} else if (length_incoming < 0) {
fprintf(stderr, "cs_get: %s\n", cs_strerror(stack));
return -1;

}

/* Print result */
fwrite(buf, length_incoming, 1, stdout);

/* clean up */
cs_close(stack);
if (buf)

xfree(buf);
return 0;

9.2 Introduction

The COMSTACK subsystem provides a transparent interface to different types of transport stacks for the
exchange of BER-encoded data and HTTP packets. At present, the RFC1729 method (BER over TCP/IP),
local UNIX socket and an experimental SSL stack are supported, but others may be added in time. The
philosophy of the module is to provide a simple interface by hiding unused options and facilities of the
underlying libraries. This is always done at the risk of losing generality, and it may prove that the interface
will need extension later on.

Note
There hasn’t been interest in the XTImOSI stack for some years. Therefore, it is no longer supported.

The interface is implemented in such a fashion that only the sub-layers constructed to the transport methods
that you wish to use in your application are linked in.

You will note that even though simplicity was a goal in the design, the interface is still orders of magnitudes
more complex than the transport systems found in many other packages. One reason is that the interface

YAZ User’s Guide and Reference 117 / 186

needs to support the somewhat different requirements of the different lower-layer communications stacks;
another important reason is that the interface seeks to provide a more or less industrial-strength approach to
asynchronous event-handling. When no function is allowed to block, things get more complex - particularly
on the server side. We urge you to have a look at the demonstration client and server provided with the
package. They are meant to be easily readable and instructive, while still being at least moderately useful.

9.3 Common Functions

9.3.1 Managing Endpoints

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

Creates an instance of the protocol stack - a communications endpoint. The type parameter determines
the mode of communication. At present the following values are supported:

tcpip_type TCP/IP (BER over TCP/IP or HTTP over TCP/IP)

ssl_type Secure Socket Layer (SSL). This COMSTACK is experimental and is not fully implemented.
If HTTP is used, this effectively is HTTPS.

unix_type Unix socket (unix only). Local Transfer via file socket. See unix(7).

The cs_create function returns a null-pointer if a system error occurs. The blocking parameter
should be ’1’ if you wish the association to operate in blocking mode, and ’0’ otherwise. The protocol
field should be PROTO_Z3950 or PROTO_HTTP. Protocol PROTO_SR is no longer supported.

void cs_close(COMSTACK handle);

Closes the connection (as elegantly as the lower layers will permit), and releases the resources pointed to
by the handle parameter. The handle should not be referenced again after this call.

Note
We really need a soft disconnect, don’t we?

9.3.2 Data Exchange

int cs_put(COMSTACK handle, char *buf, int len);

Sends buf down the wire. In blocking mode, this function will return only when a full buffer has been
written, or an error has occurred. In nonblocking mode, it’s possible that the function will be unable to send
the full buffer at once, which will be indicated by a return value of 1. The function will keep track of the
number of octets already written; you should call it repeatedly with the same values of buf and len, until
the buffer has been transmitted. When a full buffer has been sent, the function will return 0 for success. The
return value -1 indicates an error condition (see below).

int cs_get(COMSTACK handle, char **buf, int *size);

Receives a PDU or HTTP Response from the peer. Returns the number of bytes read. In nonblocking
mode, it is possible that not all of the packet can be read at once. In this case, the function returns 1. To
simplify the interface, the function is responsible for managing the size of the buffer. It will be reallocated
if necessary to contain large packages, and will sometimes be moved around internally by the subsystem
when partial packages are read. Before calling cs_get for the first time, the buffer can be initialized to
the null pointer, and the length should also be set to 0 (cs_get will perform a malloc(2) on the buffer for
you). When a full buffer has been read, the size of the package is returned (which will always be greater
than 1). The return value -1 indicates an error condition.

See also the cs_more() function below.

int cs_more(COMSTACK handle);

The cs_more() function should be used in conjunction with cs_get and select(2). The cs_get()
function will sometimes (notably in the TCP/IP mode) read more than a single protocol package off the
network. When this happens, the extra package is stored by the subsystem. After calling cs_get(),
and before waiting for more input, You should always call cs_more() to check if there’s a full protocol
package already read. If cs_more() returns 1, cs_get() can be used to immediately fetch the new
package. For the mOSI subsystem, the function should always return 0, but if you want your stuff to be
protocol independent, you should use it.

Note
The cs_more() function is required because the RFC1729-method does not provide a way of separating
individual PDUs, short of partially decoding the BER. Some other implementations will carefully nibble at
the packet by calling read(2) several times. This was felt to be too inefficient (or at least clumsy) -
hence the call for this extra function.

int cs_look(COMSTACK handle);

This function is useful when you’re operating in nonblocking mode. Call it when select(2) tells you
there’s something happening on the line. It returns one of the following values:

CS_NONE No event is pending. The data found on the line was not a complete package.

YAZ User’s Guide and Reference 119 / 186

CS_CONNECT A response to your connect request has been received. Call cs_rcvconnect to process
the event and to finalize the connection establishment.

CS_DISCON The other side has closed the connection (or maybe sent a disconnect request - but do we
care? Maybe later). Call cs_close to close your end of the association as well.

CS_LISTEN A connect request has been received. Call cs_listen to process the event.

CS_DATA There’s data to be found on the line. Call cs_get to get it.

Note
You should be aware that even if cs_look() tells you that there’s an event event pending, the corre-
sponding function may still return and tell you there was nothing to be found. This means that only part of
a package was available for reading. The same event will show up again, when more data has arrived.

int cs_fileno(COMSTACK h);

returns the file descriptor of the association. Use this when file-level operations on the endpoint are required
(select(2) operations, specifically).

9.4 Client Side

int cs_connect(COMSTACK handle, void *address);

Initiate a connection with the target at address (more on addresses below). The function will return 0
on success, and 1 if the operation does not complete immediately (this will only happen on a nonblocking
endpoint). In this case, use cs_rcvconnect to complete the operation, when select(2) or poll(2)
reports input pending on the association.

int cs_rcvconnect(COMSTACK handle);

Complete a connect operation initiated by cs_connect(). It will return 0 on success; 1 if the operation
has not yet completed (in this case, call the function again later); -1 if an error has occurred.

9.5 Server Side

To establish a server under the inetd server, you can use

COMSTACK cs_createbysocket(int socket, CS_TYPE type, int blocking,
int protocol);

The socket parameter is an established socket (when your application is invoked from inetd, the socket
will typically be 0. The following parameters are identical to the ones for cs_create.

int cs_bind(COMSTACK handle, void *address, int mode)

Binds a local address to the endpoint. Read about addresses below. The mode parameter should be either
CS_CLIENT or CS_SERVER.

int cs_listen(COMSTACK handle, char *addr, int *addrlen);

Call this to process incoming events on an endpoint that has been bound in listening mode. It will return 0
to indicate that the connect request has been received, 1 to signal a partial reception, and -1 to indicate an
error condition.

COMSTACK cs_accept(COMSTACK handle);

This finalizes the server-side association establishment, after cs_listen has completed successfully. It returns
a new connection endpoint, which represents the new association. The application will typically wish to
fork off a process to handle the association at this point, and continue listen for new connections on the old
handle.

You can use the call

const char *cs_addrstr(COMSTACK);

on an established connection to retrieve the host-name of the remote host.

Note
You may need to use this function with some care if your name server service is slow or unreliable.

9.6 Addresses

The low-level format of the addresses are different depending on the mode of communication you have
chosen. A function is provided by each of the lower layers to map a user-friendly string-form address to the
binary form required by the lower layers.

void *cs_straddr(COMSTACK handle, const char *str);

YAZ User’s Guide and Reference 121 / 186

The format for TCP/IP and SSL addresses is:

<host> [’:’ <portnum>]

The hostname can be either a domain name or an IP address. The port number, if omitted, defaults to
210.

For TCP/IP and SSL, the special hostnames @, maps to IN6ADDR_ANY_INIT with IPV4 binding as
well (bindv6only=0), The special hostname @4 binds to INADDR_ANY (IPV4 only listener). The special
hostname @6 binds to IN6ADDR_ANY_INIT with bindv6only=1 (IPV6 only listener).

For UNIX sockets, the format of an address is the socket filename.

When a connection has been established, you can use

const char *cs_addrstr(COMSTACK h);

to retrieve the host name of the peer system. The function returns a pointer to a static area, which is
overwritten on the next call to the function.

A fairly recent addition to the COMSTACK module is the utility function

COMSTACK cs_create_host (const char *str, int blocking, void **vp);

which is just a wrapper for cs_create and cs_straddr. The str is similar to that described for
cs_straddr but with a prefix denoting the COMSTACK type. Prefixes supported are tcp: and unix:
and ssl: for TCP/IP and UNIX and SSL respectively. If no prefix is given, then TCP/IP is used. The
blocking is passed to function cs_create. The third parameter vp is a pointer to COMSTACK stack
type specific values. Parameter vp is reserved for future use. Set it to NULL.

9.7 SSL

void *cs_get_ssl(COMSTACK cs);

Returns the SSL handle, SSL * for comstack. If comstack is not of type SSL, then NULL is returned.

int cs_set_ssl_ctx(COMSTACK cs, void *ctx);

Sets SSL context for comstack. The parameter is expected to be of type SSL_CTX *. This function
should be called just after comstack has been created (before connect, bind, etc). This function returns 1
for success; 0 for failure.

int cs_set_ssl_certificate_file(COMSTACK cs, const char *fname);

Sets SSL certificate for comstack as a PEM file. This function returns 1 for success; 0 for failure.

int cs_get_ssl_peer_certificate_x509(COMSTACK cs, char **buf, int *len);

This function returns the peer certificate. If successful, *buf and *len holds X509 buffer and length
respectively. Buffer should be freed with xfree. This function returns 1 for success; 0 for failure.

9.8 Diagnostics

All functions return -1 if an error occurs. Typically, the functions will return 0 on success, but the data
exchange functions (cs_get, cs_put, cs_more) follow special rules. Consult their descriptions.

The error code for the COMSTACK can be retrieved using C macro cs_errno which will return one of
the error codes CSYSERR, CSOUTSTATE, CSNODATA, ...

int cs_errno(COMSTACK handle);

You can the textual representation of the error code by using cs_errmsg, which works like strerror(3).

const char *cs_errmsg(int n);

It is also possible to get straight to the textual representation without the error code, by using cs_strerror.

const char *cs_strerror(COMSTACK h);

9.9 Summary and Synopsis

#include <yaz/comstack.h>

#include <yaz/tcpip.h> /* this is for TCP/IP and SSL support */
#include <yaz/unix.h> /* this is for UNIX socket support */

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

COMSTACK cs_createbysocket(int s, CS_TYPE type, int blocking,
int protocol);

YAZ User’s Guide and Reference 123 / 186

COMSTACK cs_create_host(const char *str, int blocking,
void **vp);

int cs_bind(COMSTACK handle, int mode);

int cs_connect(COMSTACK handle, void *address);

int cs_rcvconnect(COMSTACK handle);

int cs_listen(COMSTACK handle);

COMSTACK cs_accept(COMSTACK handle);

int cs_put(COMSTACK handle, char *buf, int len);

int cs_get(COMSTACK handle, char **buf, int *size);

int cs_more(COMSTACK handle);

void cs_close(COMSTACK handle);

int cs_look(COMSTACK handle);

void *cs_straddr(COMSTACK handle, const char *str);

const char *cs_addrstr(COMSTACK h);

YAZ User’s Guide and Reference 125 / 186

Chapter 10

Future Directions

We have a new and better version of the front-end server on the drawing board. Resources and external
commitments will govern when we’ll be able to do something real with it. Features should include greater
flexibility, greater support for access/resource control, and easy support for Explain (possibly with Zebra as
an extra database engine).

YAZ is a BER toolkit and as such should support all protocols out there based on that. We’d like to see
running ILL applications. It shouldn’t be that hard. Another thing that would be interesting is LDAP. Maybe
a generic framework for doing IR using both LDAP and Z39.50 transparently.

The SOAP implementation is incomplete. In the future we hope to add more features to it. Perhaps make a
WSDL/XML Schema compiler. The authors of libxml2 are already working on XML Schema and RELAX
NG compilers so this may not be too hard.

It would be neat to have a proper module mechanism for the Generic Frontend Server so that backend would
be dynamically loaded (as shared objects / DLLs).

Other than that, YAZ generally moves in the directions which appear to make the most people happy
(including ourselves, as prime users of the software). If there’s something you’d like to see in here, then
drop us a note and let’s see what we can come up with.

YAZ User’s Guide and Reference 127 / 186

Chapter 11

Reference

The material in this chapter is drawn directly from the individual manual entries.

11.1 yaz-client

yaz-client — Z39.50/SRU client for implementors

Synopsis

yaz-client [-a apdulog] [-b berdump] [-c cclfile] [-d dump] [-f cmdfile] [-k size]
[-m marclog] [-p proxy-addr] [-q cqlfile] [-t dispcharset] [-u auth] [-v loglevel]
[-V] [-x] [server-addr]

DESCRIPTION

yaz-client is a Z39.50/SRU client (origin) with a simple command line interface that allows you to test
behavior and performance of Z39.50 targets and SRU servers.

From YAZ version 4.1.0 yaz-client may also operate as a Solr Web Service client.

If the server-addr is specified, the client creates a connection to the Z39.50/SRU target at the address
given.

When yaz-client is started it tries to read commands from one of the following files:

• Command file if it is given by option -f.

• .yazclientrc in current working directory.

• .yazclientrc in the user’s home directory. The value of the $HOME environment variable is used to
determine the home directory. Normally, $HOME is only set on POSIX systems such as Linux, FreeBSD,
Solaris.

https://www.loc.gov/z3950/agency/
https://www.loc.gov/standards/sru/
https://lucene.apache.org/solr/

OPTIONS

-a filename If specified, logging of protocol packages will be appended to the file given. If filename is
specified as -, the output is written to stdout.

-b filename If specified, YAZ will dump BER data in readable notation to the file specified. If filename
is specified as - the output is written to stdout.

-c filename If specified, CCL configuration will be read from the file given.

-d dump If specified, YAZ will dump BER data for all PDUs sent and received to individual files, named
dump.DDD.raw, where DDD is 001, 002, 003, ...

-f cmdfile Reads commands from cmdfile. When this option is used, YAZ client does not read .yazclientrc
from current directory or home directory.

-k size Sets preferred messages and maximum record size for Initialize Request in kilobytes. Default
value is 65536 (64 MB).

-m filename If specified, retrieved records will be appended to the file given.

-p proxy-addr If specified, the client will use the proxy at the address given. YAZ client will connect to
a proxy on the address and port given. The actual target will be specified as part of the InitRequest to
inform the proxy about the actual target.

-q filename If specified, CQL configuration will be read from the file given.

-t displaycharset If displaycharset is given, it specifies name of the character set of the output (on the
terminal on which YAZ client is running).

-u auth If specified, the auth string will be used for authentication.

-v level Sets the LOG level to level. Level is a sequence of tokens separated by comma. Each token
is a integer or a named LOG item - one of fatal, debug, warn, log, malloc, all, none.

-V Prints YAZ version.

-x Makes the YAZ client print hex dumps of packages sent and received on standard output.

COMMANDS

The YAZ client accepts the following commands.

open zurl Opens a connection to a server. The syntax for zurl is the same as described above for
connecting from the command line.

Syntax:

[(tcp|ssl|unix|http)’:’]host [:port][/base]

quit Quits YAZ client

YAZ User’s Guide and Reference 129 / 186

find query Sends a Search Request using the query given. By default the query is assumed to be
PQF. See command querytype for more information.

delete setname Deletes result set with name setname on the server.

base base1 base2 ... Sets the name(s) of the database(s) to search. One or more databases may be
specified, separated by blanks. This command overrides the database given in zurl.

show [start[+number [+resultset]]] Fetches records by sending a Present Request from the start
position given by start and a number of records given by number, from the result set resultset.
If start is not given, then the client will fetch from the position of the last retrieved record plus 1. If
number is not given, then one record will be fetched at a time. If resultset is not given, the most
recently retrieved result set is used.

scan term Scans database index for a term. The syntax resembles the syntax for find. If you want to
scan for the word water you could write

scan water

but if you want to scan only in, say the title field, you would write

scan @attr 1=4 water

setscan set term Scans database index for a term within a result set. This is similar to the scan
command but has a result set as its first argument.

scanpos pos Sets preferred position for scan. This value is used in the next scan. By default, position
is 1.

scansize size Sets number of entries to be returned by scan. Default number of entries is 20.

scanstep step Set step-size for scan. This value is used in the next scan sent to the target. By default
step-size is 0.

sort sortspecs Sorts a result set. The sort command takes a sequence of space-separated sort spec-
ifications, with each sort specification consisting of two space-separated words (so that the whole
specification list is made up of an even number of words). The first word of each specification holds
a field (sort criterion) and the second holds flags. If the sort criterion includes = it is assumed that
the SortKey is of type sortAttributes using Bib-1: in this case the integer before = is the
attribute type and the integer following = is the attribute value. If no = character is in the criterion,
it is treated as a sortfield of type InternationalString. The flags word of each sort specification must
consist of s for case sensitive or i for case insensitive, and < for ascending order or > for descending
order.

Example using sort criterion with attributes use=local-number and structure=numeric and ascending
flag: 1=12,4=109 <

Another example with "Title" sort field and descending flag: Title >

sort+ Same as sort but stores the sorted result set in a new result set.

authentication openauth Sets up an authentication string if a server requires authentication (v2
OpenStyle). The authentication string is first sent to the server when the open command is issued
and the Z39.50 Initialize Request is sent, so this command must be used before open in order to
be effective. A common convention for the authopen string is that the username - and password is
separated by a slash, e.g. myusername/mysecret.

sru method version Selects Web Service method and version. Must be one of post, get, soap
(default) or solr. Version should be either 1.1, 1.2 or 2.0 for SRU. Other versions are allowed - for
testing purposes (version negotiation with SRU server). The version is currently not used for Solr
Web Services

list_all This command displays status and values for many settings.

lslb n Sets the limit for when no records should be returned together with the search result. See the
Z39.50 standard on set bounds for more details.

ssub n Sets the limit for when all records should be returned with the search result. See the Z39.50
standard on set bounds for more details.

mspn n Sets the number of records that should be returned if the number of records in the result set is
between the values of lslb and ssub. See the Z39.50 standard on set bounds for more details.

status Displays the values of lslb, ssub and mspn.

setname Switches named result sets on and off. Default is on.

cancel Sends a Trigger Resource Control Request to the target.

facets spec Specifies requested facets to be used in search. The notation is specified in Section 7.8.

format oid Sets the preferred transfer syntax for retrieved records. yaz-client supports all the record
syntaxes that currently are registered. See Z39.50 Record Syntax Identifiers for more details. Com-
monly used records syntaxes include usmarc, sutrs and xml.

elements e Sets the element set name for the records. Many targets support element sets B (for brief)
and F (for full).

close Sends a Z39.50 Close APDU and closes connection with the peer

querytype type Sets the query type as used by command find. The following is supported: prefix
for Prefix Query Notation (Type-1 Query); ccl for CCL search (Type-2 Query), cql for CQL (Type-
104 search with CQL OID), ccl2rpn for CCL to RPN conversion (Type-1 Query), cql2rpn for
CQL to RPN conversion (Type-1 Query).

attributeset set Sets attribute set OID for prefix queries (RPN, Type-1).

refid id Sets reference ID for Z39.50 Request(s).

itemorder type no Sends an Item Order Request using the ILL External. type is either 1 or 2 which
corresponds to ILL-Profile 1 and 2 respectively. The no is the Result Set position of the record to be
ordered.

http://www.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6
http://www.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6
http://www.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6
http://www.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6
http://www.loc.gov/z3950/agency/defns/oids.html#5

YAZ User’s Guide and Reference 131 / 186

update action recid doc Sends Item Update Request. The action argument must be the action
type: one of insert, replace, delete and update. The second argument, recid, is the
record identifier (any string). Third argument which is optional is the record document for the request.
If doc is preceded with "<", then the following characters are treated as a filename with the records
to be updated. Otherwise doc is treated as a document itself. The doc may also be quoted in double
quotes. If doc is omitted, the last received record (as part of present response or piggybacked search
response) is used for the update.

source filename Executes list of commands from file filename, just like ’source’ on most UNIX
shells. A single dot (.) can be used as an alternative.

! args Executes command args in subshell using the system call.

push_command command The push_command takes another command as its argument. That command
is then added to the history information (so you can retrieve it later). The command itself is not
executed. This command only works if you have GNU readline/history enabled.

set_apdufile filename Sets that APDU should be logged to file filename. Another way to
achieve APDU log is by using command-line option -a.

set_auto_reconnect flag Specifies whether YAZ client automatically reconnects if the target closes
connection (Z39.50 only).

flag must be either on or off.

set_auto_wait flag Specifies whether YAZ client should wait for response protocol packages after
a request. By default YAZ client waits (on) for response packages immediately after a command
(find, show) has been issued. If off is used, YAZ client does not attempt to receive packages auto-
matically. These will have to be manually received when command wait_response is used.

flag must be either on or off.

set_marcdump filename Specifies that all retrieved records should be appended to file filename.
This command does the same thing as option -m.

schema schemaid Specifies schema for retrieval. Schema may be specified as an OID for Z39.50. For
SRU, schema is a simple string URI.

charset negotiationcharset [displaycharset] [[marccharset]] Specifies character set (en-
coding) for Z39.50 negotiation / SRU encoding and/or character set for output (terminal).

negotiationcharset is the name of the character set to be negotiated by the server. The special
name - for negotiationcharset specifies no character set to be negotiated.

If displaycharset is given, it specifies name of the character set of the output (on the terminal on
which YAZ client is running). To disable conversion of characters to the output encoding, the special
name - (dash) can be used. If the special name auto is given, YAZ client will convert strings to the
encoding of the terminal as returned by nl_langinfo call.

If marccharset is given, it specifies name of the character set of retrieved MARC records from
server. See also marccharset command.

Note
Since character set negotiation takes effect in the Z39.50 Initialize Request you should issue this
command before command open is used.

Note
MARC records are not covered by Z39.50 character set negotiation, so that’s why there is a separate
character that must be known in order to do meaningful conversion(s).

negcharset charset Specifies character set for negotiation (Z39.50). The argument is the same as
second argument for command charset.

displaycharset charset Specifies character set for output (display). The argument is the same as
second argument for command charset.

marccharset charset Specifies character set for retrieved MARC records so that YAZ client can
display them in a character suitable for your display. See charset command. If auto is given,
YAZ will assume that MARC21/USMARC is using MARC8/UTF8 and ISO-8859-1 for all other
MARC variants. The charset argument is the same as third argument for command charset.

querycharset charset Specifies character set for query terms for Z39.50 RPN queries and Z39.50
Scan Requests (termListAndStartPoint). This is a pure client-side conversion which converts from
displayCharset to queryCharset.

set_cclfile filename Specifies that CCL fields should be read from file file filename. This com-
mand does the same thing as option -c.

set_cqlfile filename Specifies that CQL fields should be read from file file filename. This com-
mand does the same thing as option -q.

register_oid name class OID This command allows you to register your own object identifier - so
that instead of entering a long dot-notation you can use a short name instead. The name is your name
for the OID, class is the class, and OID is the raw OID in dot notation. Class is one of: appctx,
absyn, attet, transyn, diagset, recsyn, resform, accform, extserv, userinfo,
elemspec, varset, schema, tagset, general. If you’re in doubt use the general class.

register_tab command string This command registers a TAB completion string for the command
given.

sleep seconds This command makes YAZ client sleep (be idle) for the number of seconds given.

wait_response [number] This command makes YAZ client wait for a number of response packages
from target. If number is omitted, 1 is assumed.

This command is rarely used and is only useful if command set_auto_wait is set to off.

xmles OID doc Sends XML Extended Services request using the OID and doc given.

zversion ver This command sets Z39.50 version for negotiation. Should be used before open. By
default 3 (version 3) is used.

YAZ User’s Guide and Reference 133 / 186

options op1 op2.. This command sets Z39.50 options for negotiation. Should be used before open.

The following options are supported: search, present, delSet, resourceReport, triggerResourceCtrl,
resourceCtrl, accessCtrl, scan, sort, extendedServices, level_1Segmentation,
level_2Segmentation, concurrentOperations, namedResultSets, encapsulation,
resultCount, negotiationModel, duplicationDetection, queryType104, pQESCorrection,
stringSchema.

EXAMPLE

The simplest example of a Prefix Query would be something like

f knuth

or

f "donald knuth"

In those queries, no attributes were specified. This leaves it up to the server what fields to search but most
servers will search in all fields. Some servers do not support this feature though, and require that some
attributes are defined. To add one attribute you could do:

f @attr 1=4 computer

where we search in the title field, since the use(1) is title(4). If we want to search in the author field and in
the title field, and in the title field using right truncation it could look something like this:

f @and @attr 1=1003 knuth @attr 1=4 @attr 5=1 computer

Finally using a mix of Bib-1 and GILS attributes could look something like this:

f @attrset Bib-1 @and @attr GILS 1=2008 Washington @attr 1=21 weather

FILES

yaz-<version>/client/client.c

$HOME/.yazclientrc

$HOME/.yazclient.history

SEE ALSO

yaz(7) bib1-attr(7)

11.2 yaz-ztest

yaz-ztest — Z39.50/SRU Test Server

Synopsis

application [-install] [-installa] [-remove] [-a file] [-v level] [-l file] [-u uid]
[-c config] [-f vconfig] [-C fname] [-t minutes] [-k kilobytes] [-K] [-d daemon] [-w
dir] [-p pidfile] [-r kilobytes] [-ziDSTV1] [listener-spec...]

DESCRIPTION

yaz-ztest is a Z39.50/SRU test server that uses the YAZ generic front-end server (GFS) API. The server
acts as a real Z39.50/SRU server but does not use a database. It returns a random hit count and returns a
subset of a few built-in records.

The listener-spec consists of a transport mode followed by a colon, followed by a listener address. The
transport mode is either tcp, unix, or ssl.

For TCP and SSL, an address has the form:

hostname | IP-number [: portnumber]

For UNIX local socket, the address is the filename of the local socket.

OPTIONS

-a file Specify a file for dumping PDUs (for diagnostic purposes). The special name - (dash) sends
output to stderr.

-S Don’t fork or make threads on connection requests. This is good for debugging, but not recommended
for real operation: Although the server is asynchronous and non-blocking, it can be nice to keep a
software malfunction (okay then, a crash) from affecting all current users.

-1 Like -S but after one session the server exits. This mode is for debugging only.

-T Operate the server in threaded mode. The server creates a thread for each connection rather than fork a
process. Only available on UNIX systems that offer POSIX threads.

-s Use the SR protocol (obsolete).

-z Use the Z39.50 protocol (default). This option and -s complement each other. You can use both
multiple times on the same command line, between listener-specifications (see below). This way, you
can set up the server to listen for connections in both protocols concurrently, on different local ports.

-l file The logfile.

-c config A user option that serves as a specifier for some sort of configuration, usually a filename. The
argument to this option is transferred to member configname of the statserv_options_block.

-f vconfig This specifies an XML file that describes one or more YAZ frontend virtual servers.

-C fname Sets SSL certificate file name for server (PEM).

YAZ User’s Guide and Reference 135 / 186

-v level The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,malloc,all,none}.

-u uid Set user ID. Sets the real UID of the server process to that of the given user. It’s useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged
port.

-w dir The server changes to this directory before listening to incoming connections. This option is
useful when the server is operating from the inetd daemon (see -i).

-p pidfile Specifies that the server should write its Process ID to the file given by pidfile. A typical
location would be /var/run/yaz-ztest.pid.

-i Use this to make the the server run from the inetd server (UNIX only).

-D Use this to make the server put itself in the background and run as a daemon. If neither -i nor -D is
given, the server starts in the foreground.

-install Use this to install the server as an NT service (Windows NT/2000/XP only). Control the server
by going to the Services in the Control Panel.

-installa Use this to install the server as an NT service and mark it as "auto-start. Control the server
by going to the Services in the Control Panel.

-remove Use this to remove the server from the NT services (Windows NT/2000/XP only).

-t minutes Idle session timeout, in minutes.

-k size Maximum record size/message size, in kilobytes.

-K Forces no-keepalive for HTTP sessions. By default GFS will keep sessions alive for HTTP 1.1 sessions
(as defined by the standard). Using this option will force GFS to close the connection for each
operation.

-r size Maximum size of log file before rotation occurs, in kilobytes. Default size is 1048576 k (=1
GB).

-d daemon Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

-m time-format Sets the format of time-stamps in the log-file. Specify a string in the input format to
strftime().

-V Display YAZ version and exit.

TESTING

yaz-ztest normally returns a random hit count between 0 and 24. However, if a query term includes leading
digits, then the integer value of that term is used as hit count. This allows testers to return any number of
hits. yaz-ztest includes 24 MARC records for testing. Hit counts exceeding 24 will make yaz-ztest return
the same record batch over and over. So record at position 1, 25, 49, etc. are equivalent.

For XML, if no element set is given or element has value "marcxml", MARCXML is returned (each of the
24 dummy records converted from ISO2709 to XML). For element set OP, then OPAC XML is returned.

yaz-ztest may also return predefined XML records (for testing). This is enabled if YAZ_ZTEST_XML_FETCH
environment variable is defined. A record is fetched from a file (one record per file). The path for the file-
name is FE.d.xml where F is the YAZ_ZTEST_XML_FETCH value (possibly empty), E is element-set,
d is record position (starting from 1).

The following databases are honored by yaz-ztest: Default, slow and db.* (all databases with prefix
"db"). Any other database will make yaz-ztest return diagnostic 109: "Database unavailable".

Options for search may be included in the form or URL get arguments included as part of the Z39.50
database name. The following database options are present: search-delay, present-delay, fetch-delay
and seed.

The former, delay type options, specify a fake delay (sleep) that yaz-ztest will perform when searching,
presenting, fetching records respectively. The value of the delay may either be a fixed floating point value
which specifies the delay in seconds. Alternatively the value may be given as two floating point numbers
separated by colon, which will make yaz-ztest perform a random sleep between the first and second number.

The database parameter seed takes an integer as value. This will call srand with this integer to ensure
that the random behavior can be re-played.

Suppose we want searches to take between 0.1 and 0.5 seconds and a fetch to take 0.2 second. To access
test database Default we’d use: Default?search-delay=0.1:0.5&fetch-delay=0.2.

GFS CONFIGURATION AND VIRTUAL HOSTS

The Virtual hosts mechanism allows a YAZ front-end server to support multiple back-ends. A back-end is
selected on the basis of the TCP/IP binding (port+listening address) and/or the virtual host.

A back-end can be configured to execute in a particular working directory. Or the YAZ front-end may
perform CQL to RPN conversion, thus allowing traditional Z39.50 back-ends to be offered as a SRW/SRU
service. SRW/SRU Explain information for a particular back-end may also be specified.

For the HTTP protocol, the virtual host is specified in the Host header. For the Z39.50 protocol, the virtual
host is specified as in the Initialize Request in the OtherInfo, OID 1.2.840.10003.10.1000.81.1.

Note
Not all Z39.50 clients allow the VHOST information to be set. For those, the selection of the back-end
must rely on the TCP/IP information alone (port and address).

The YAZ front-end server uses XML to describe the back-end configurations. Command-line option -f
specifies filename of the XML configuration.

The configuration uses the root element yazgfs. This element includes a list of listen elements, fol-
lowed by one or more server elements.

The listen describes listener (transport end point), such as TCP/IP, Unix file socket or SSL server. Con-
tent for a listener:

CDATA (required) The CDATA for the listen element holds the listener string, such as tcp:@:210,
tcp:server1:2100, etc.

YAZ User’s Guide and Reference 137 / 186

attribute id (optional) Identifier for this listener. This may be referred to from server sections.

Note
We expect more information to be added for the listen section in a future version, such as CERT file for
SSL servers.

The server describes a server and the parameters for this server type. Content for a server:

attribute id (optional) Identifier for this server. Currently not used for anything, but it might be for
logging purposes.

attribute listenref (optional) Specifies one or more listeners for this server. Each server ID is sepa-
rated by a comma. If this attribute is not given, the server is accessible from all listeners. In order for
the server to be used for real, however, the virtual host must match if specified in the configuration.

element config (optional) Specifies the server configuration. This is equivalent to the config specified
using command line option -c.

element directory (optional) Specifies a working directory for this backend server. If specified, the
YAZ frontend changes current working directory to this directory whenever a backend of this type is
started (backend handler bend_start), stopped (backend handler hand_stop) and initialized (bend_init).

element host (optional) Specifies the virtual host for this server. If this is specified a client must specify
this host string in order to use this backend.

element cql2rpn (optional) Specifies a filename that includes CQL to RPN conversion for this backend
server. See Section 7.1.3.4. If given, the backend server will only "see" a Type-1/RPN query.

element ccl2rpn (optional) Specifies a filename that includes CCL to RPN conversion for this backend
server. See Section 7.1.2.2. If given, the backend server will only "see" a Type-1/RPN query.

element stylesheet (optional) Specifies the stylesheet reference to be part of SRU HTTP responses
when the client does not specify one. If none is given, then if the client does not specify one, then no
stylesheet reference is part of the SRU HTTP response.

element client_query_charset (optional) If specified, a conversion from the character set given to
UTF-8 is performed by the generic frontend server. It is only executed for Z39.50 search requests
(SRU/Solr are assumed to be UTF-8 encoded already).

element docpath (optional) Specifies a path for local file access using HTTP. All URLs with a leading
prefix (/ excluded) that matches the value of docpath are used for file access. For example, if
the server is to offer access in directory xsl, the docpath would be xsl and all URLs of the form
http://host/xsl will result in a local file access.

element explain (optional) Specifies SRW/SRU ZeeRex content for this server. Copied verbatim to the
client. As things are now, some of the Explain content seem redundant because host information, etc.
is also stored elsewhere.

element maximumrecordsize (optional) Specifies maximum record size/message size, in bytes. This
value also serves as the maximum size of incoming packages (for Record Updates etc). It’s the same
value as that given by the -k option.

element retrievalinfo (optional) Enables the retrieval facility to support conversions and specifica-
tions of record formats/types. See Section 7.6 for more information.

The XML below configures a server that accepts connections from two ports, TCP/IP port 9900 and a local
UNIX file socket. We name the TCP/IP server public and the other server internal.

<yazgfs>
<listen id="public">tcp:@:9900</listen>
<listen id="internal">unix:/var/tmp/socket</listen>
<server id="server1">
<host>server1.mydomain</host>
<directory>/var/www/s1</directory>
<config>config.cfg</config>

</server>
<server id="server2" listenref="public,internal">
<host>server2.mydomain</host>
<directory>/var/www/s2</directory>
<config>config.cfg</config>
<cql2rpn>../etc/pqf.properties</cql2rpn>
<explain xmlns="http://explain.z3950.org/dtd/2.0/">

<serverInfo>
<host>server2.mydomain</host>
<port>9900</port>
<database>a</database>

</serverInfo>
</explain>

</server>
<server id="server3" listenref="internal">
<directory>/var/www/s3</directory>
<config>config.cfg</config>

</server>
</yazgfs>

There are three configured backend servers. The first two servers, "server1" and "server2", can be
reached by both listener addresses. "server1" is reached by all (two) since no listenref attribute is
specified. "server2" is reached by the two listeners specified. In order to distinguish between the two, a
virtual host has been specified for each server in the host elements.

For "server2" elements for CQL to RPN conversion is supported and explain information has been
added (a short one here to keep the example small).

The third server, "server3" can only be reached via listener "internal".

YAZ User’s Guide and Reference 139 / 186

FILES

yaz-<version>/ztest/yaz-ztest.c

yaz-<version>/include/yaz/backend.h

SEE ALSO

yaz(7) yaz-log(7)

11.3 yaz-config

yaz-config — Script to get information about YAZ.

Synopsis

yaz-config [--prefix[=DIR]] [--version] [--libs] [--lalibs] [--cflags] [--include]
[--comp] [-V] [libraries...]

DESCRIPTION

yaz-config is a script that returns information that your own software should use to build software that uses
YAZ.

The following libraries are supported:

threads Use the threaded version of YAZ.

OPTIONS

--prefix[=DIR] Returns prefix of YAZ or assume a different one if DIR is specified.

--version Returns version of YAZ.

--libs Library specification be used when using YAZ.

--lalibs Return library specification.

--cflags Return C Compiler flags.

--include Return C compiler includes for YAZ header files (-Ipath).

--comp Returns full path to YAZ’ ASN.1 compiler: yaz-asncomp.

-V Returns YAZ SHA1 ID (from Git) and version.

FILES

/usr/bin/yaz-config

/usr/lib/libyaz*.a

/usr/include/yaz/*.h

SEE ALSO

yaz(7)

Section "How to make apps using YAZ on UNIX" in the YAZ manual.

11.4 yaz

yaz — Z39.50 toolkit.

DESCRIPTION

YAZ is a C/C++ programmer’s toolkit supporting the development of Z39.50v3 clients and servers. The
YAZ toolkit offers several different levels of access to the ISO23950/Z39.50, SRU Solr (client only) and
ILL protocols. The level that you need to use depends on your requirements, and the role (server or client)
that you want to implement.

COPYRIGHT

Copyright © 1995-2023 Index Data.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Index Data nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

YAZ User’s Guide and Reference 141 / 186

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SEE ALSO

yaz-client(1), yaz-ztest(8), yaz-config(8), zoomsh(1) bib1-attr(7)

YAZ manual (/usr/share/doc/yaz)

YAZ home page.

Z39.50 Maintenance Agency Page.

11.5 zoomsh

zoomsh — ZOOM shell

Synopsis

zoomsh [-a apdufile] [-e] [-v loglevel] [commands...]

DESCRIPTION

zoomsh is a ZOOM client with a simple command line interface. The client demonstrates the ZOOM API
and is useful for testing targets.

You may pass one or more commands to zoomsh. These commands are invoked first.

OPTIONS

-a apdufile Logs protocol packages into apdufile (APDU log).

-e Makes zoomsh stop processing commands as soon as an error occur. The exit code of zoomsh is 1 if
error occurs; 0 otherwise.

-v loglevel Sets YAZ log level to loglevel.

http://www.indexdata.com/yaz
https://www.loc.gov/z3950/agency/

EXAMPLES

If you start the yaz-ztest in one console you can use the ZOOM shell as follows:
$ zoomsh
ZOOM>connect localhost:9999
ZOOM>search computer
localhost:9999: 7 hits
ZOOM>show 0 1
1 Default USmarc
001 11224466
003 DLC
005 00000000000000.0
008 910710c19910701nju 00010 eng
010 $a 11224466
040 $a DLC $c DLC
050 00 $a 123-xyz
100 10 $a Jack Collins
245 10 $a How to program a computer
260 1 $a Penguin
263 $a 8710
300 $a p. cm.
ZOOM>quit

You can also achieve the same result by passing the commands as arguments on a single command line:

$ zoomsh "connect localhost:9999" "search computer" "show 0 1" quit

COMMANDS

connect zurl Connects to the target given by zurl.

close [zurl] Closes connection to target given by zurl or all targets if zurl was omitted.

show [start [count]] Displays count records starting at offset given by start. First records has
offset 0 (unlike the Z39.50 protocol).

quit Quits zoomsh.

set name [value] Sets option name to value.

get name Prints value of option name.

help Prints list of available commands.

SEE ALSO

yaz(7), yaz-ztest(8),

Section "Building clients with ZOOM" in the YAZ manual.

ZOOM home page.

http://zoom.z3950.org/

YAZ User’s Guide and Reference 143 / 186

11.6 yaz-asncomp

yaz-asncomp — YAZ ASN.1 compiler

Synopsis

yaz-asncomp [-v] [-c cfile] [-h hfile] [-p pfile] [-d config] [-I includeout] [-i includedir]
[-m module] [filename]

DESCRIPTION

yaz-asncomp is an ASN.1 compiler that reads an ASN.1 specification in filename and produces C/C++
definitions and BER encoders/decoders for it.

The produced C/C++ code and header files uses the ODR module of YAZ which is a library that encodes/de-
codes/prints BER packages. yaz-asncomp allows you to specify name of resulting source via options. Al-
ternatively, you can specify a DEFINITIONS file, which provides customized output to many output files -
if the ASN.1 specification file consists of many modules.

This utility is written in Tcl. Any version of Tcl should work.

OPTIONS

-v Makes the ASN.1 compiler print more verbose about the various stages of operations.

-c cfile Specifies the name of the C/C++ file with encoders/decoders.

-h hfile Specifies the name of header file with definitions.

-p pfile Specifies the name of the a private header file with definitions. By default all definitions are
put in header file (option -h).

-d dfile Specifies the name of a definitions file.

-I iout Specifies first part of directory in which header files are written.

-i idir Specifies second part of directory in which header files are written.

-m module Specifies that ASN.1 compiler should only process the module given. If this option is not
specified, all modules in the ASN.1 file are processed.

DEFINITIONS FILE

The definitions file is really a Tcl script but follows traditional rules for Shell like configuration files. That
is # denotes the beginning of a comment. Definitions are line oriented. The definitions files usually consist
of a series of variable assignments of the form:

set name value

Available variables are:

default-prefix Sets prefix for names in the produced output. The value consists of three tokens: C
function prefix, C typedef prefix and preprocessor prefix respectively.

prefix(module) This value sets prefix values for module module. The value has same form as default-prefix.

filename(module) Specifies filename for C/header file for module module.

init(module,h) Code fragment to be put in first part of public header for module module.

body(module,h) Code fragment to be put in last part of public header for module module (trailer).

init(module,c) Code fragment to be put in first part of C based encoder/decoder for module module.

body(module,c) Code fragment to be put in last part of C based encoder/decoder for module module
(trailer).

map(module,name) Maps ASN.1 type in module module of name to value.

membermap(module,name,member) Maps member member in SEQUENCE/CHOICE of name in
module module to value. The value consists of one or two tokens. First token is name of C pre-
processor part. Second token is resulting C member name. If second token is omitted the value (one
token) is both preprocessor part and C struct,union.

unionmap(module,name,member) Maps member member in CHOICE of name in module module

to value. Value consists of two or three tokens. The first token is name of the integer in the union
that is used as selector for the union itself. The second token is name of the union. The third token
overrides the name of the CHOICE member; if omitted the member name is used.

FILES

/usr/share/yaz/z39.50/z.tcl

/usr/share/yaz/z39.50/*.asn

SEE ALSO

yaz(7)

Section "The ODR Module" in the YAZ manual.

YAZ User’s Guide and Reference 145 / 186

11.7 yaz-marcdump

yaz-marcdump — MARC record dump utility

Synopsis

yaz-marcdump [-i format] [-o format] [-f from] [-t to] [-l spec] [-c cfile] [-s prefix]
[-C size] [-O offset] [-L limit] [-n] [-p] [-r] [-v] [-V] [file...]

DESCRIPTION

yaz-marcdump reads MARC records from one or more files. It parses each record and supports output in
line-format, ISO2709, MARCXML, MARC-in-JSON, MarcXchange as well as Hex output.

This utility parses records ISO2709(raw MARC), line format, MARC-in-JSON format as well as XML if
that is structured as MARCXML/MarcXchange.

MARC-in-JSON encoding/decoding is supported in YAZ 5.0.5 and later.

Note
As of YAZ 2.1.18, OAI-MARC is no longer supported. OAI-MARC is deprecated. Use MARCXML instead.

By default, each record is written to standard output in a line format with newline for each field, $x for each
sub-field x. The output format may be changed with option -o,

yaz-marcdump can also be requested to perform character set conversion of each record.

OPTIONS

-i format Specifies input format. Must be one of marcxml, marc (ISO2709), marcxchange (ISO25577),
line (line mode MARC), turbomarc (Turbo MARC), or json (MARC-in-JSON).

-o format Specifies output format. Must be one of marcxml, marc (ISO2709), marcxchange (ISO25577),
line (line mode MARC), turbomarc (Turbo MARC), or json (MARC-in-JSON).

-f from Specify the character set of the input MARC record. Should be used in conjunction with option
-t. Refer to the yaz-iconv man page for supported character sets.

-t to Specify the character set of the output. Should be used in conjunction with option -f. Refer to the
yaz-iconv man page for supported character sets.

-l leaderspec Specify a simple modification string for MARC leader. The leaderspec is a list of
pos=value pairs, where pos is an integer offset (0 - 23) for leader. Value is either a quoted string or an
integer (character value in decimal). Pairs are comma separated. For example, to set leader at offset
9 to a, use 9=’a’.

https://www.loc.gov/standards/marcxml/
https://rossfsinger.com/blog/2010/09/a-proposal-to-serialize-marc-in-json/
https://www.loc.gov/standards/iso25577/

-s prefix Writes a chunk of records to a separate file with prefix given, i.e. splits a record batch into files
with only at most "chunk" ISO2709 records per file. By default chunk is 1 (one record per file). See
option -C.

-C chunksize Specifies chunk size; to be used conjunction with option -s.

-O offset Integer offset for at what position records whould be written. 0=first record, 1=second, .. With
-L option, this allows a specific range of records to be processed.

-L limit Integer limit for how many records should at most be written. With -O option, this allows a
specific range of records to be processed.

-p Makes yaz-marcdump print record number and input file offset of each record read.

-n MARC output is omitted so that MARC input is only checked.

-r Writes to stderr a summary about number of records read by yaz-marcdump.

-v Writes more information about the parsing process. Useful if you have ill-formatted ISO2709 records
as input.

-V Prints YAZ version.

EXAMPLES

The following command converts MARC21/USMARC in MARC-8 encoding to MARC21/USMARC in
UTF-8 encoding. Leader offset 9 is set to ’a’. Both input and output records are ISO2709 encoded.

yaz-marcdump -f MARC-8 -t UTF-8 -o marc -l 9=97 marc21.raw >marc21.utf8 ←↩
.raw

The same records may be converted to MARCXML instead in UTF-8:

yaz-marcdump -f MARC-8 -t UTF-8 -o marcxml marc21.raw >marcxml.xml

Turbo MARC is a compact XML notation with same semantics as MARCXML, but which allows for faster
processing via XSLT. In order to generate Turbo MARC records encoded in UTF-8 from MARC21 (ISO),
one could use:

yaz-marcdump -f MARC8 -t UTF8 -o turbomarc -i marc marc21.raw >out.xml

FILES

prefix/bin/yaz-marcdump

prefix/include/yaz/marcdisp.h

SEE ALSO

yaz(7)

yaz-iconv(1)

YAZ User’s Guide and Reference 147 / 186

11.8 yaz-iconv

yaz-iconv — YAZ Character set conversion utility

Synopsis

yaz-iconv [-f from] [-t to] [-v] [file...]

DESCRIPTION

yaz-iconv converts data in the character set specified by from to output in the character set as specified by
to.

This yaz-iconv utility is similar to the iconv found on many POSIX systems (Glibc, Solaris, etc).

If no file is specified, yaz-iconv reads from standard input.

OPTIONS

-ffrom] Specify the character set from of the input file. Should be used in conjunction with option -t.

-tto] Specify the character set of of the output. Should be used in conjunction with option -f.

-v Print more information about the conversion process.

ENCODINGS

The yaz-iconv command and the API as defined in yaz/yaz-iconv.h is a wrapper for the library
system call iconv. But YAZ’ iconv utility also implements conversions on its own. The table below lists
characters sets (or encodings) that are supported by YAZ. Each character set is marked with either encode
or decode. If an encoding is encode-enabled, YAZ may convert to the designated encoding. If an encoding
is decode-enabled, YAZ may convert from the designated encoding.

marc8 (encode, decode) The MARC8 encoding as defined by the Library of Congress. Most MARC21/USMARC
records use this encoding.

marc8s (encode, decode) Like MARC8 but conversion prefers non-combined characters in the Latin-1
plane over combined characters.

marc8lossy (encode) Lossy encoding of MARC-8.

marc8lossless (encode) Lossless encoding of MARC8.

utf8 (encode, decode) The most commonly used UNICODE encoding on the Internet.

iso8859-1 (encode, decode) ISO-8859-1, AKA Latin-1.

https://www.loc.gov/marc/specifications/speccharmarc8.html

iso5426 (decode) ISO 5426. Some MARC records (UNIMARC) use this encoding.

iso5428:1984 (encode, decode) ISO 5428:1984.

advancegreek (encode, decode) An encoding for Greek in use by some vendors (Advance).

danmarc (decode) Danmarc (in danish) is an encoding based on UNICODE which is used for DanMARC2
records.

EXAMPLES

The following command converts from ISO-8859-1 (Latin-1) to UTF-8.

yaz-iconv -f ISO-8859-1 -t UTF-8 <input.lst >output.lst

FILES

prefix/bin/yaz-iconv

prefix/include/yaz/yaz-iconv.h

SEE ALSO

yaz(7) iconv(1)

11.9 yaz-log

yaz-log — Log handling in all yaz-based programs

Synopsis

yaz-XXXX [-v loglevel,...] [-l logfile]

DESCRIPTION

All YAZ-based programs use a common log subsystem, and should support common command line options
for controlling it. This man page documents those.

http://www.kat-format.dk/danMARC2/Danmarc2.4.htm

YAZ User’s Guide and Reference 149 / 186

OPTIONS

-l logfile Specify the file where the log is to be written. If none is specified, stderr is used. The log is
appended to this file. If the file grows overly large, it is silently rotated: It is renamed to logfile.1,
logfile.2, .., 9 (old such file is deleted), and a new file is opened. The limit defaults to 1GB, but
can be set by the program. The rotating limit can be specified with option -r for the YAZ frontend
server (yaz-ztest).

Rotation can also be implicitly enabled by using a filename which gets changed for a given date, due
to substitutions as given by the strftime(3) function.

-v loglevel Specify the logging level. The argument is a set of log level names, separated by commas
(no whitespace!), optionally preceded by a ’-’ to negate that level. Most programs have their own
default, often containing fatal,warn,log, and some application-specific values. The default list
can be cleared with the word none, or individual bits can be removed by prefixing them with a dash
’-’.

LOG LEVELS TO CONTROL LOGGING

Some of the log levels control the way the log is written.

flush causes the log to be flushed after every write. This can have serious implications to performance,
and should not be used in production. On the other hand, when debugging a program crash, this can be
extremely useful. The option debug implies flush as well.

notime prevents the writing of time stamps. This is intended for automatic test scripts, which should
produce predictable log files that are easy to compare.

GENERAL LOG LEVELS IN YAZ ITSELF

YAZ itself uses the following log levels:

fatal for fatal errors, that prevent further execution of the program.

warn for warnings about things that should be corrected.

debug for debugging. This flag may be used temporarily when developing or debugging yaz, or a program
that uses yaz. It is practically deprecated, you should be defining and using your own log levels (see below).

all turns on almost all hard-coded log levels.

loglevel logs information about the log levels used by the program. Every time the log level is changed,
lists all bits that are on. Every time a module asks for its log bits, this is logged. This can be used
for getting an idea of what log levels are available in any program that uses yaz-log. Start the pro-
gram with -v none,loglevel, and do some common operations with it. Another way is to grep for
yaz_log_module_level in the source code, as in

find . -name ’*.[ch]’ -print |
xargs grep yaz_log_module_level |
grep ’"’ |
cut -d’"’ -f2 |
sort -u

eventl, malloc, nmem, odr are used internally for debugging yaz.

LOG LEVELS FOR CLIENTS

zoom logs the calls to the zoom API, which may be useful in debugging client applications.

LOG LEVELS FOR SERVERS

server logs the server functions on a high level, starting up, listening on a port, etc.

session logs individual sessions (connections).

request logs a one-liner for each request (init, search, etc.).

requestdetail logs the details of every request, before it is passed to the back-end, and the results
received from it.

Each server program (zebra, etc.) is supposed to define its own log levels in addition to these. As they
depend on the server in question, they can not be described here. See above how to find out about them.

LOGGING EXAMPLES

See what log levels yaz-ztest is using:

yaz-ztest -1 -v none,loglevel
14:43:29-23/11 [loglevel] Setting log level to 4096 = 0x00001000
14:43:29-23/11 [loglevel] Static log bit 00000001 ’fatal’ is off
14:43:29-23/11 [loglevel] Static log bit 00000002 ’debug’ is off
14:43:29-23/11 [loglevel] Static log bit 00000004 ’warn’ is off
14:43:29-23/11 [loglevel] Static log bit 00000008 ’log’ is off
14:43:29-23/11 [loglevel] Static log bit 00000080 ’malloc’ is off
14:43:29-23/11 [loglevel] Static log bit 00000800 ’flush’ is off
14:43:29-23/11 [loglevel] Static log bit 00001000 ’loglevel’ is ON
14:43:29-23/11 [loglevel] Static log bit 00002000 ’server’ is off
14:43:29-23/11 [loglevel] Dynamic log bit 00004000 ’session’ is off
14:43:29-23/11 [loglevel] Dynamic log bit 00008000 ’request’ is off
14:44:13-23/11 yaz-ztest [loglevel] returning log bit 0x4000 for ’ ←↩

session’
14:44:13-23/11 yaz-ztest [loglevel] returning log bit 0x2000 for ’ ←↩

server’
14:44:13-23/11 yaz-ztest [loglevel] returning NO log bit for ’eventl’
14:44:20-23/11 yaz-ztest [loglevel] returning log bit 0x4000 for ’ ←↩

session’
14:44:20-23/11 yaz-ztest [loglevel] returning log bit 0x8000 for ’ ←↩

request’
14:44:20-23/11 yaz-ztest [loglevel] returning NO log bit for ’ ←↩

requestdetail’
14:44:20-23/11 yaz-ztest [loglevel] returning NO log bit for ’odr’
14:44:20-23/11 yaz-ztest [loglevel] returning NO log bit for ’ztest’

YAZ User’s Guide and Reference 151 / 186

See the details of the requests for yaz-ztest
./yaz-ztest -1 -v requestdetail
14:45:35-23/11 yaz-ztest [server] Adding static Z3950 listener on tcp:@ ←↩

:9999
14:45:35-23/11 yaz-ztest [server] Starting server ./yaz-ztest pid=32200
14:45:38-23/11 yaz-ztest [session] Starting session from tcp:127.0.0.1 (←↩

pid=32200)
14:45:38-23/11 yaz-ztest [requestdetail] Got initRequest
14:45:38-23/11 yaz-ztest [requestdetail] Id: 81
14:45:38-23/11 yaz-ztest [requestdetail] Name: YAZ
14:45:38-23/11 yaz-ztest [requestdetail] Version: 2.0.28
14:45:38-23/11 yaz-ztest [requestdetail] Negotiated to v3: srch prst del ←↩

extendedServices namedresults scan sort
14:45:38-23/11 yaz-ztest [request] Init from ’YAZ’ (81) (ver 2.0.28) OK
14:45:39-23/11 yaz-ztest [requestdetail] Got SearchRequest.
14:45:39-23/11 yaz-ztest [requestdetail] ResultSet ’1’
14:45:39-23/11 yaz-ztest [requestdetail] Database ’Default’
14:45:39-23/11 yaz-ztest [requestdetail] RPN query. Type: Bib-1
14:45:39-23/11 yaz-ztest [requestdetail] term ’foo’ (general)
14:45:39-23/11 yaz-ztest [requestdetail] resultCount: 7
14:45:39-23/11 yaz-ztest [request] Search Z: @attrset Bib-1 foo OK:7 ←↩

hits
14:45:41-23/11 yaz-ztest [requestdetail] Got PresentRequest.
14:45:41-23/11 yaz-ztest [requestdetail] Request to pack 1+1 1
14:45:41-23/11 yaz-ztest [requestdetail] pms=1048576, mrs=1048576
14:45:41-23/11 yaz-ztest [request] Present: [1] 1+1 OK 1 records ←↩

returned

LOG FILENAME EXAMPLES

A file with format my_YYYYMMDD.log (where Y, M, D is year, month, and day digits) is given as follows:
-l my_%Y%m%d.log . And since the filename is depending on day, rotation will occur on midnight.

A weekly log could be specified as -l my_%Y%U.log.

FILES

prefix/include/yaz/log.h prefix/src/log.c

SEE ALSO

yaz(7) yaz-ztest(8) yaz-client(1) strftime(3)

11.10 yaz-illclient

yaz-illclient — ILL client

Synopsis

yaz-illclient [-f filename] [-v loglevel] [-Dname=value...] [-o] [-u user] [-p password]
[-V] [server-addr]

DESCRIPTION

yaz-illclient is a client which sends an ISO ILL request to a remote server and decodes the response from
it. Exactly one server address (server-addr) must be specified.

OPTIONS

-f filename] Specify filename.

-v loglevel] Specify the log level.

-D name=value] Defines name & value pair.

-o Enable OCLC authentication.

-u user] Specify user.

-p password] Specify password.

-V Show yaz-illclient version.

EXAMPLES

None yet.

FILES

None yet.

SEE ALSO

yaz(7)

11.11 yaz-icu

yaz-icu — YAZ ICU utility

YAZ User’s Guide and Reference 153 / 186

Synopsis

yaz-icu [-c config] [-p opt] [-s] [-x] [infile]

DESCRIPTION

yaz-icu is a utility which demonstrates the ICU chain module of yaz. (yaz/icu.h).

The utility can be used in two ways. It may read some text using an XML configuration for configuring
ICU and show text analysis. This mode is triggered by option -c which specifies the configuration to be
used. The input file is read from standard input or from a file if infile is specified.

The utility may also show ICU information. This is triggered by option -p.

OPTIONS

-c config Specifies the file containing ICU chain configuration which is XML based.

-p type Specifies extra information to be printed about the ICU system. If type is c then ICU converters
are printed. If type is l, then available locales are printed. If type is t, then available transliterators
are printed.

-s Specifies that output should include sort key as well. Note that sort key differs between ICU versions.

-x Specifies that output should be XML based rather than "text" based.

ICU chain configuration

The ICU chain configuration specifies one or more rules to convert text data into tokens. The configuration
format is XML based.

The toplevel element must be named icu_chain. The icu_chain element has one required attribute
locale which specifies the ICU locale to be used in the conversion steps.

The icu_chain element must include elements where each element specifies a conversion step. The
conversion is performed in the order in which the conversion steps are specified. Each conversion element
takes one attribute: rule which serves as argument to the conversion step.

The following conversion elements are available:

casemap Converts case (and rule specifies how):

l Lower case using ICU function u_strToLower.

u Upper case using ICU function u_strToUpper.

t To title using ICU function u_strToTitle.

f Fold case using ICU function u_strFoldCase.

display This is a meta step which specifies that a term/token is to be displayed. This term is retrieved in an
application using function icu_chain_token_display (yaz/icu.h).

transform Specifies an ICU transform rule using a transliterator Identifier. The rule attribute is the translit-
erator Identifier. See ICU Transforms for more information.

transliterate Specifies a rule-based transliterator. The rule attribute is the custom transformation rule to be
used. See ICU Transforms for more information.

tokenize Breaks / tokenizes a string into components using ICU functions ubrk_open, ubrk_setText, .. .
The rule is one of:

l Line. ICU: UBRK_LINE.

s Sentence. ICU: UBRK_SENTENCE.

w Word. ICU: UBRK_WORD.

c Character. ICU: UBRK_CHARACTER.

t Title. ICU: UBRK_TITLE.

join Joins tokens into one string. The rule attribute is the joining string, which may be empty. The join
conversion element was added in YAZ 4.2.49.

EXAMPLES

The following command analyzes text in file text using ICU chain configuration chain.xml:

cat text | yaz-icu -c chain.xml

The chain.xml might look as follows:

<icu_chain locale="en">
<transform rule="[:Control:] Any-Remove"/>
<tokenize rule="w"/>
<transform rule="[[:WhiteSpace:][:Punctuation:]] Remove"/>
<transliterate rule="xy > z;"/>
<display/>
<casemap rule="l"/>

</icu_chain>

SEE ALSO

yaz(7)

ICU Home

ICU Transforms

http://userguide.icu-project.org/transforms/general
http://userguide.icu-project.org/transforms/general
http://www.icu-project.org/
http://userguide.icu-project.org/transforms/general

YAZ User’s Guide and Reference 155 / 186

11.12 yaz-url

yaz-url — YAZ URL fetch utility

Synopsis

yaz-url [-H name:value] [-m method] [-O fname] [-p fname] [-R num] [-u user/password] [-v]
[-x proxy] [url...]

DESCRIPTION

yaz-url is utility to get web content. It is very limited in functionality compared to programs such as curl,
wget.

The options must precede the URL given on the command line, to take effect.

Fetched HTTP content is written to stdout, unless option -O is given.

OPTIONS

-H name:value Specifies HTTP header content with name and value. This option can be given multiple
times (for different names, of course).

-m method Specifies the HTTP method to be used for the next URL. Default is method "GET". However,
option -p sets it to "POST".

-O fname Sets output filename for HTTP content.

-p fname Sets a file to be POSTed in the following URL.

-R num Sets maximum number of HTTP redirects to be followed. A value of zero disables follow of HTTP
redirects.

-u user/password Specifies a user and a password to be used in HTTP basic authentication in the fol-
lowing URL fetch. The user and password must be separated by a slash (thus it is not possible to
specify a user with a slash in it).

-v Makes yaz-url dump each HTTP request/response to stdout.

-x proxy Specifies a proxy to be used for URL fetch.

SEE ALSO

yaz(7)

11.13 Bib-1 Attribute Set

bib1-attr — Bib-1 Attribute Set

DESCRIPTION

This reference entry lists the Bib-1 attribute set types and values.

TYPES

The Bib-1 attribute set defines six attribute types: Use (1), Relation (2), Position (3), Structure (4), Trunca-
tion (5) and Completeness (6).

USE (1)

1 Personal-name
2 Corporate-name
3 Conference-name
4 Title
5 Title-series
6 Title-uniform
7 ISBN
8 ISSN
9 LC-card-number
10 BNB-card-number
11 BGF-number
12 Local-number
13 Dewey-classification
14 UDC-classification
15 Bliss-classification
16 LC-call-number
17 NLM-call-number
18 NAL-call-number
19 MOS-call-number
20 Local-classification
21 Subject-heading
22 Subject-Rameau
23 BDI-index-subject
24 INSPEC-subject
25 MESH-subject
26 PA-subject
27 LC-subject-heading
28 RVM-subject-heading
29 Local-subject-index
30 Date
31 Date-of-publication

YAZ User’s Guide and Reference 157 / 186

32 Date-of-acquisition
33 Title-key
34 Title-collective
35 Title-parallel
36 Title-cover
37 Title-added-title-page
38 Title-caption
39 Title-running
40 Title-spine
41 Title-other-variant
42 Title-former
43 Title-abbreviated
44 Title-expanded
45 Subject-precis
46 Subject-rswk
47 Subject-subdivision
48 Number-natl-biblio
49 Number-legal-deposit
50 Number-govt-pub
51 Number-music-publisher
52 Number-db
53 Number-local-call
54 Code-language
55 Code-geographic
56 Code-institution
57 Name-and-title
58 Name-geographic
59 Place-publication
60 CODEN
61 Microform-generation
62 Abstract
63 Note
1000 Author-title
1001 Record-type
1002 Name
1003 Author
1004 Author-name-personal
1005 Author-name-corporate
1006 Author-name-conference
1007 Identifier-standard
1008 Subject-LC-childrens
1009 Subject-name-personal
1010 Body-of-text
1011 Date/time-added-to-db
1012 Date/time-last-modified
1013 Authority/format-id
1014 Concept-text
1015 Concept-reference
1016 Any
1017 Server-choice

1018 Publisher
1019 Record-source
1020 Editor
1021 Bib-level
1022 Geographic-class
1023 Indexed-by
1024 Map-scale
1025 Music-key
1026 Related-periodical
1027 Report-number
1028 Stock-number
1030 Thematic-number
1031 Material-type
1032 Doc-id
1033 Host-item
1034 Content-type
1035 Anywhere
1036 Author-Title-Subject

RELATION (2)

1 Less than
2 Less than or equal
3 Equal
4 Greater or equal
5 Greater than
6 Not equal
100 Phonetic
101 Stem
102 Relevance
103 AlwaysMatches

POSITION (3)

1 First in field
2 First in subfield
3 Any position in field

STRUCTURE (4)

1 Phrase
2 Word
3 Key
4 Year
5 Date (normalized)

YAZ User’s Guide and Reference 159 / 186

6 Word list
100 Date (un-normalized)
101 Name (normalized)
102 Name (un-normalized)
103 Structure
104 Urx
105 Free-form-text
106 Document-text
107 Local-number
108 String
109 Numeric-string

TRUNCATION (5)

1 Right truncation
2 Left truncation
3 Left and right truncation
100 Do not truncate
101 Process # in search term . regular #=.*
102 RegExpr-1
103 RegExpr-2
104 Process # ?n . regular: #=., ?n=.{0,n} or ?=.* Z39.58

The 105-106 truncation attributes below are only supported by Index Data’s Zebra server.

105 Process * ! regular: *=.*, !=. and right truncate
106 Process * ! regular: *=.*, !=.

COMPLETENESS (6)

1 Incomplete subfield
2 Complete subfield
3 Complete field

SORTING (7)

1 ascending
2 descending

Type 7 is an Index Data extension to RPN queries that allows embedding a sort critieria into a query.

SEE ALSO

Bib-1 Attribute Set

Attribute Set Bib-1 Semantics.

https://www.loc.gov/z3950/agency/defns/bib1.html
http://www.loc.gov/z3950/agency/bib1.html

11.14 yaz-json-parse

yaz-json-parse — YAZ JSON parser

Synopsis

yaz-json-parse [-p]

DESCRIPTION

yaz-json-parse is a utility which demonstrates the JSON API of YAZ. (yaz/json.h).

The program attempts to parse a JSON from standard input (stdin). It will return exit code 1 if parsing fails
and the parsing error message will be printed to standard error (stderr). The program returns exit code 0 if
parsing succeeds, and returns no output unless -p is given (see below).

OPTIONS

-p Makes the JSON parser echo the JSON result string to standard output, if parsing from stdin was suc-
cessful. If -p is given twice, then the output is a multi-line output with indentation (pretty print).

SEE ALSO

yaz(7)

11.15 yaz-record-iconv

yaz-record-conv — YAZ Record Conversion Utility

Synopsis

yaz-record-conv [-v loglevel] [config] [fname...]

DESCRIPTION

yaz-record-conv is a program that exercises the record conversion sub system. Refer to record_conv.h
header.

YAZ User’s Guide and Reference 161 / 186

OPTIONS

-v level Sets the LOG level to level. Level is a sequence of tokens separated by comma. Each token
is a integer or a named LOG item - one of fatal, debug, warn, log, malloc, all, none.

EXAMPLES

The following backend configuration converts MARC records (ISO2709) to Dublin-Core XML.

<backend name="F" syntax="usmarc">
<marc inputcharset="marc-8" inputformat="marc" outputformat="marcxml ←↩

"/>
<xslt stylesheet="../etc/MARC21slim2DC.xsl"/>

</backend>

We can convert one of the sample records from YAZ’ test directory with:

$../util/yaz-record-conv record-conv-conf.xml marc6.marc
<?xml version="1.0"?>
<dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:title>How to program a computer</dc:title>
<dc:creator>

Jack Collins
</dc:creator>
<dc:type>text</dc:type>
<dc:publisher>Penguin</dc:publisher>
<dc:language>eng</dc:language>

</dc:dc>

FILES

record_conv.h

SEE ALSO

yaz(7)

YAZ User’s Guide and Reference 163 / 186

Appendix A

List of Object Identifiers

These is a list of object identifiers that are built into YAZ.

Name Class Constant / OID

BER TRANSYN
yaz_oid_transyn_ber

2.1.1

ISO2709 TRANSYN
yaz_oid_transyn_iso2709

1.0.2709.1.1

ISOILL-1 GENERAL
yaz_oid_general_isoill_1

1.0.10161.2.1

Z-APDU ABSYN
yaz_oid_absyn_z_apdu

2.1

Z-BASIC APPCTX
yaz_oid_appctx_z_basic

1.1

Bib-1 ATTSET
yaz_oid_attset_bib_1

Z3950_PREFIX.3.1

Exp-1 ATTSET
yaz_oid_attset_exp_1

Z3950_PREFIX.3.2

Ext-1 ATTSET
yaz_oid_attset_ext_1

Z3950_PREFIX.3.3

CCL-1 ATTSET
yaz_oid_attset_ccl_1

Z3950_PREFIX.3.4

GILS ATTSET
yaz_oid_attset_gils

Z3950_PREFIX.3.5

GILS-attset ATTSET
yaz_oid_attset_gils_attset

Z3950_PREFIX.3.5

STAS-attset ATTSET
yaz_oid_attset_stas_attset

Z3950_PREFIX.3.6

Collections-attset ATTSET yaz_oid_attset_collections_attset
Z3950_PREFIX.3.7

CIMI-attset ATTSET
yaz_oid_attset_cimi_attset

Z3950_PREFIX.3.8

Geo-attset ATTSET
yaz_oid_attset_geo_attset

Name Class Constant / OID
Z3950_PREFIX.3.9

ZBIG ATTSET
yaz_oid_attset_zbig

Z3950_PREFIX.3.10

Util ATTSET
yaz_oid_attset_util

Z3950_PREFIX.3.11

XD-1 ATTSET
yaz_oid_attset_xd_1

Z3950_PREFIX.3.12

Zthes ATTSET
yaz_oid_attset_zthes

Z3950_PREFIX.3.13

Fin-1 ATTSET
yaz_oid_attset_fin_1

Z3950_PREFIX.3.14

Dan-1 ATTSET
yaz_oid_attset_dan_1

Z3950_PREFIX.3.15

Holdings ATTSET
yaz_oid_attset_holdings

Z3950_PREFIX.3.16

MARC ATTSET
yaz_oid_attset_marc

Z3950_PREFIX.3.17

Bib-2 ATTSET
yaz_oid_attset_bib_2

Z3950_PREFIX.3.18

ZeeRex ATTSET
yaz_oid_attset_zeerex

Z3950_PREFIX.3.19

Thesaurus-attset ATTSET yaz_oid_attset_thesaurus_attset
Z3950_PREFIX.3.1000.81.1

IDXPATH ATTSET
yaz_oid_attset_idxpath

Z3950_PREFIX.3.1000.81.2

EXTLITE ATTSET
yaz_oid_attset_extlite

Z3950_PREFIX.3.1000.81.3

Bib-1 DIAGSET
yaz_oid_diagset_bib_1

Z3950_PREFIX.4.1

Diag-1 DIAGSET
yaz_oid_diagset_diag_1

Z3950_PREFIX.4.2

Diag-ES DIAGSET
yaz_oid_diagset_diag_es

Z3950_PREFIX.4.3

Diag-General DIAGSET yaz_oid_diagset_diag_general
Z3950_PREFIX.4.3

Unimarc RECSYN
yaz_oid_recsyn_unimarc

Z3950_PREFIX.5.1

Intermarc RECSYN
yaz_oid_recsyn_intermarc

Z3950_PREFIX.5.2

CCF RECSYN
yaz_oid_recsyn_ccf

Z3950_PREFIX.5.3

USmarc RECSYN
yaz_oid_recsyn_usmarc

Z3950_PREFIX.5.10

MARC21 RECSYN
yaz_oid_recsyn_marc21

YAZ User’s Guide and Reference 165 / 186

Name Class Constant / OID
Z3950_PREFIX.5.10

UKmarc RECSYN
yaz_oid_recsyn_ukmarc

Z3950_PREFIX.5.11

Normarc RECSYN
yaz_oid_recsyn_normarc

Z3950_PREFIX.5.12

Librismarc RECSYN
yaz_oid_recsyn_librismarc

Z3950_PREFIX.5.13

Danmarc RECSYN
yaz_oid_recsyn_danmarc

Z3950_PREFIX.5.14

Finmarc RECSYN
yaz_oid_recsyn_finmarc

Z3950_PREFIX.5.15

MAB RECSYN
yaz_oid_recsyn_mab

Z3950_PREFIX.5.16

Canmarc RECSYN
yaz_oid_recsyn_canmarc

Z3950_PREFIX.5.17

SBN RECSYN
yaz_oid_recsyn_sbn

Z3950_PREFIX.5.18

Picamarc RECSYN
yaz_oid_recsyn_picamarc

Z3950_PREFIX.5.19

Ausmarc RECSYN
yaz_oid_recsyn_ausmarc

Z3950_PREFIX.5.20

Ibermarc RECSYN
yaz_oid_recsyn_ibermarc

Z3950_PREFIX.5.21

Carmarc RECSYN
yaz_oid_recsyn_carmarc

Z3950_PREFIX.5.22

Malmarc RECSYN
yaz_oid_recsyn_malmarc

Z3950_PREFIX.5.23

JPmarc RECSYN
yaz_oid_recsyn_jpmarc

Z3950_PREFIX.5.24

SWEmarc RECSYN
yaz_oid_recsyn_swemarc

Z3950_PREFIX.5.25

SIGLEmarc RECSYN
yaz_oid_recsyn_siglemarc

Z3950_PREFIX.5.26

ISDSmarc RECSYN
yaz_oid_recsyn_isdsmarc

Z3950_PREFIX.5.27

RUSmarc RECSYN
yaz_oid_recsyn_rusmarc

Z3950_PREFIX.5.28

Hunmarc RECSYN
yaz_oid_recsyn_hunmarc

Z3950_PREFIX.5.29

NACSIS-CATP RECSYN
yaz_oid_recsyn_nacsis_catp

Z3950_PREFIX.5.30

FINMARC2000 RECSYN
yaz_oid_recsyn_finmarc2000

Z3950_PREFIX.5.31

MARC21-fin RECSYN
yaz_oid_recsyn_marc21_fin

Z3950_PREFIX.5.32

Explain RECSYN
yaz_oid_recsyn_explain

Name Class Constant / OID
Z3950_PREFIX.5.100

SUTRS RECSYN
yaz_oid_recsyn_sutrs

Z3950_PREFIX.5.101

OPAC RECSYN
yaz_oid_recsyn_opac

Z3950_PREFIX.5.102

Summary RECSYN
yaz_oid_recsyn_summary

Z3950_PREFIX.5.103

GRS-0 RECSYN
yaz_oid_recsyn_grs_0

Z3950_PREFIX.5.104

GRS-1 RECSYN
yaz_oid_recsyn_grs_1

Z3950_PREFIX.5.105

Extended RECSYN
yaz_oid_recsyn_extended

Z3950_PREFIX.5.106

Fragment RECSYN
yaz_oid_recsyn_fragment

Z3950_PREFIX.5.107

pdf RECSYN
yaz_oid_recsyn_pdf

Z3950_PREFIX.5.109.1

postscript RECSYN
yaz_oid_recsyn_postscript

Z3950_PREFIX.5.109.2

html RECSYN
yaz_oid_recsyn_html

Z3950_PREFIX.5.109.3

tiff RECSYN
yaz_oid_recsyn_tiff

Z3950_PREFIX.5.109.4

gif RECSYN
yaz_oid_recsyn_gif

Z3950_PREFIX.5.109.5

jpeg RECSYN
yaz_oid_recsyn_jpeg

Z3950_PREFIX.5.109.6

png RECSYN
yaz_oid_recsyn_png

Z3950_PREFIX.5.109.7

mpeg RECSYN
yaz_oid_recsyn_mpeg

Z3950_PREFIX.5.109.8

sgml RECSYN
yaz_oid_recsyn_sgml

Z3950_PREFIX.5.109.9

tiff-b RECSYN
yaz_oid_recsyn_tiff_b

Z3950_PREFIX.5.110.1

wav RECSYN
yaz_oid_recsyn_wav

Z3950_PREFIX.5.110.2

SQL-RS RECSYN
yaz_oid_recsyn_sql_rs

Z3950_PREFIX.5.111

SOIF RECSYN
yaz_oid_recsyn_soif

Z3950_PREFIX.5.1000.81.2

JSON RECSYN
yaz_oid_recsyn_json

Z3950_PREFIX.5.1000.81.3

XML RECSYN
yaz_oid_recsyn_xml

Z3950_PREFIX.5.109.10

text-XML RECSYN
yaz_oid_recsyn_text_xml

YAZ User’s Guide and Reference 167 / 186

Name Class Constant / OID
Z3950_PREFIX.5.109.10

application-XML RECSYN yaz_oid_recsyn_application_xml
Z3950_PREFIX.5.109.11

Resource-1 RESFORM
yaz_oid_resform_resource_1

Z3950_PREFIX.7.1

Resource-2 RESFORM
yaz_oid_resform_resource_2

Z3950_PREFIX.7.2

UNIverse-Resource-Report RESFORM yaz_oid_resform_universe_resource_report
Z3950_PREFIX.7.1000.81.1

Prompt-1 ACCFORM
yaz_oid_accform_prompt_1

Z3950_PREFIX.8.1

Des-1 ACCFORM
yaz_oid_accform_des_1

Z3950_PREFIX.8.2

Krb-1 ACCFORM
yaz_oid_accform_krb_1

Z3950_PREFIX.8.3

Persistent set EXTSERV yaz_oid_extserv_persistent_set
Z3950_PREFIX.9.1

Persistent query EXTSERV yaz_oid_extserv_persistent_query
Z3950_PREFIX.9.2

Periodic query EXTSERV yaz_oid_extserv_periodic_query
Z3950_PREFIX.9.3

Item order EXTSERV
yaz_oid_extserv_item_order

Z3950_PREFIX.9.4

Database Update (first version) EXTSERV yaz_oid_extserv_database_update_first_version
Z3950_PREFIX.9.5

Database Update (second
version)

EXTSERV yaz_oid_extserv_database_update_second_version
Z3950_PREFIX.9.5.1

Database Update EXTSERV yaz_oid_extserv_database_update
Z3950_PREFIX.9.5.1.1

exp. spec. EXTSERV
yaz_oid_extserv_exp__spec_

Z3950_PREFIX.9.6

exp. inv. EXTSERV
yaz_oid_extserv_exp__inv_

Z3950_PREFIX.9.7

Admin EXTSERV
yaz_oid_extserv_admin

Z3950_PREFIX.9.1000.81.1

searchResult-1 USERINFO yaz_oid_userinfo_searchresult_1
Z3950_PREFIX.10.1

Name Class Constant / OID

CharSetandLanguageNegotiation USERINFO yaz_oid_userinfo_charsetandlanguagenegotiation
Z3950_PREFIX.10.2

UserInfo-1 USERINFO
yaz_oid_userinfo_userinfo_1

Z3950_PREFIX.10.3

MultipleSearchTerms-1 USERINFO yaz_oid_userinfo_multiplesearchterms_1
Z3950_PREFIX.10.4

MultipleSearchTerms-2 USERINFO yaz_oid_userinfo_multiplesearchterms_2
Z3950_PREFIX.10.5

DateTime USERINFO
yaz_oid_userinfo_datetime

Z3950_PREFIX.10.6

Proxy USERINFO
yaz_oid_userinfo_proxy

Z3950_PREFIX.10.1000.81.1

Cookie USERINFO
yaz_oid_userinfo_cookie

Z3950_PREFIX.10.1000.81.2

Client-IP USERINFO
yaz_oid_userinfo_client_ip

Z3950_PREFIX.10.1000.81.3

Scan-Set USERINFO
yaz_oid_userinfo_scan_set

Z3950_PREFIX.10.1000.81.4

Facet-1 USERINFO
yaz_oid_userinfo_facet_1

Z3950_PREFIX.10.1000.81.5

Espec-1 ELEMSPEC
yaz_oid_elemspec_espec_1

Z3950_PREFIX.11.1

Variant-1 VARSET
yaz_oid_varset_variant_1

Z3950_PREFIX.12.1

WAIS-schema SCHEMA
yaz_oid_schema_wais_schema

Z3950_PREFIX.13.1

GILS-schema SCHEMA
yaz_oid_schema_gils_schema

Z3950_PREFIX.13.2

Collections-schema SCHEMA yaz_oid_schema_collections_schema
Z3950_PREFIX.13.3

Geo-schema SCHEMA
yaz_oid_schema_geo_schema

Z3950_PREFIX.13.4

CIMI-schema SCHEMA
yaz_oid_schema_cimi_schema

Z3950_PREFIX.13.5

Update ES SCHEMA
yaz_oid_schema_update_es

Z3950_PREFIX.13.6

Holdings SCHEMA
yaz_oid_schema_holdings

Z3950_PREFIX.13.7

Zthes SCHEMA
yaz_oid_schema_zthes

Z3950_PREFIX.13.8

thesaurus-schema SCHEMA yaz_oid_schema_thesaurus_schema

YAZ User’s Guide and Reference 169 / 186

Name Class Constant / OID
Z3950_PREFIX.13.1000.81.1

Explain-schema SCHEMA yaz_oid_schema_explain_schema
Z3950_PREFIX.13.1000.81.2

TagsetM TAGSET
yaz_oid_tagset_tagsetm

Z3950_PREFIX.14.1

TagsetG TAGSET
yaz_oid_tagset_tagsetg

Z3950_PREFIX.14.2

STAS-tagset TAGSET
yaz_oid_tagset_stas_tagset

Z3950_PREFIX.14.3

GILS-tagset TAGSET
yaz_oid_tagset_gils_tagset

Z3950_PREFIX.14.4

Collections-tagset TAGSET yaz_oid_tagset_collections_tagset
Z3950_PREFIX.14.5

CIMI-tagset TAGSET
yaz_oid_tagset_cimi_tagset

Z3950_PREFIX.14.6

thesaurus-tagset TAGSET yaz_oid_tagset_thesaurus_tagset
Z3950_PREFIX.14.1000.81.1

Explain-tagset TAGSET yaz_oid_tagset_explain_tagset
Z3950_PREFIX.14.1000.81.2

Zthes-tagset TAGSET
yaz_oid_tagset_zthes_tagset

Z3950_PREFIX.14.8

Charset-3 NEGOT
yaz_oid_negot_charset_3

Z3950_PREFIX.15.3

Charset-4 NEGOT
yaz_oid_negot_charset_4

Z3950_PREFIX.15.4

Charset-ID NEGOT
yaz_oid_negot_charset_id

Z3950_PREFIX.15.1000.81.1

CQL USERINFO
yaz_oid_userinfo_cql

Z3950_PREFIX.16.2

UCS-2 GENERAL
yaz_oid_general_ucs_2

1.0.10646.1.0.2

UCS-4 GENERAL
yaz_oid_general_ucs_4

1.0.10646.1.0.4

UTF-16 GENERAL
yaz_oid_general_utf_16

1.0.10646.1.0.5

UTF-8 GENERAL
yaz_oid_general_utf_8

1.0.10646.1.0.8

OCLC-userInfo USERINFO yaz_oid_userinfo_oclc_userinfo
Z3950_PREFIX.10.1000.17.1

XML-ES EXTSERV
yaz_oid_extserv_xml_es

Z3950_PREFIX.9.1000.105.4

YAZ User’s Guide and Reference 171 / 186

Appendix B

Bib-1 diagnostics

List of Bib-1 diagnostics that are known to YAZ.

Code Text
1 Permanent system error
2 Temporary system error
3 Unsupported search
4 Terms only exclusion (stop) words
5 Too many argument words
6 Too many boolean operators
7 Too many truncated words
8 Too many incomplete subfields
9 Truncated words too short
10 Invalid format for record number (search term)
11 Too many characters in search statement
12 Too many records retrieved
13 Present request out of range
14 System error in presenting records
15 Record no authorized to be sent intersystem
16 Record exceeds Preferred-message-size
17 Record exceeds Maximum-record-size
18 Result set not supported as a search term
19 Only single result set as search term supported
20 Only ANDing of a single result set as search term supported
21 Result set exists and replace indicator off
22 Result set naming not supported
23 Combination of specified databases not supported
24 Element set names not supported
25 Specified element set name not valid for specified database
26 Only a single element set name supported
27 Result set no longer exists - unilaterally deleted by target
28 Result set is in use
29 One of the specified databases is locked
30 Specified result set does not exist

Code Text
31 Resources exhausted - no results available
32 Resources exhausted - unpredictable partial results available
33 Resources exhausted - valid subset of results available
100 Unspecified error
101 Access-control failure
102 Security challenge required but could not be issued - request terminated
103 Security challenge required but could not be issued - record not included
104 Security challenge failed - record not included
105 Terminated by negative continue response
106 No abstract syntaxes agreed to for this record
107 Query type not supported
108 Malformed query
109 Database unavailable
110 Operator unsupported
111 Too many databases specified
112 Too many result sets created
113 Unsupported attribute type
114 Unsupported Use attribute
115 Unsupported value for Use attribute
116 Use attribute required but not supplied
117 Unsupported Relation attribute
118 Unsupported Structure attribute
119 Unsupported Position attribute
120 Unsupported Truncation attribute
121 Unsupported Attribute Set
122 Unsupported Completeness attribute
123 Unsupported attribute combination
124 Unsupported coded value for term
125 Malformed search term
126 Illegal term value for attribute
127 Unparsable format for un-normalized value
128 Illegal result set name
129 Proximity search of sets not supported
130 Illegal result set in proximity search
131 Unsupported proximity relation
132 Unsupported proximity unit code
201 Proximity not supported with this attribute combination
202 Unsupported distance for proximity
203 Ordered flag not supported for proximity
205 Only zero step size supported for Scan
206 Specified step size not supported for Scan
207 Cannot sort according to sequence
208 No result set name supplied on Sort
209 Generic sort not supported (database-specific sort only supported)
210 Database specific sort not supported
211 Too many sort keys

YAZ User’s Guide and Reference 173 / 186

Code Text
212 Duplicate sort keys
213 Unsupported missing data action
214 Illegal sort relation
215 Illegal case value
216 Illegal missing data action
217 Segmentation: Cannot guarantee records will fit in specified segments
218 ES: Package name already in use
219 ES: no such package, on modify/delete
220 ES: quota exceeded
221 ES: extended service type not supported
222 ES: permission denied on ES - id not authorized
223 ES: permission denied on ES - cannot modify or delete
224 ES: immediate execution failed
225 ES: immediate execution not supported for this service
226 ES: immediate execution not supported for these parameters
227 No data available in requested record syntax
228 Scan: malformed scan
229 Term type not supported
230 Sort: too many input results
231 Sort: incompatible record formats
232 Scan: term list not supported
233 Scan: unsupported value of position-in-response
234 Too many index terms processed
235 Database does not exist
236 Access to specified database denied
237 Sort: illegal sort
238 Record not available in requested syntax
239 Record syntax not supported
240 Scan: Resources exhausted looking for satisfying terms
241 Scan: Beginning or end of term list
242 Segmentation: max-segment-size too small to segment record
243 Present: additional-ranges parameter not supported
244 Present: comp-spec parameter not supported
245 Type-1 query: restriction (’resultAttr’) operand not supported
246 Type-1 query: ’complex’ attributeValue not supported
247 Type-1 query: ’attributeSet’ as part of AttributeElement not supported
1001 Malformed APDU
1002 ES: EXTERNAL form of Item Order request not supported
1003 ES: Result set item form of Item Order request not supported
1004 ES: Extended services not supported unless access control is in effect
1005 Response records in Search response not supported

1006
Response records in Search response not possible for specified database (or
database combination)

1007
No Explain server. Addinfo: pointers to servers that have a surrogate Explain
database for this server

1008 ES: missing mandatory parameter for specified function. Addinfo: parameter

Code Text
1009 ES: Item Order, unsupported OID in itemRequest. Addinfo: OID
1010 Init/AC: Bad Userid
1011 Init/AC: Bad Userid and/or Password
1012 Init/AC: No searches remaining (pre-purchased searches exhausted)

1013
Init/AC: Incorrect interface type (specified id valid only when used with a
particular access method or client)

1014 Init/AC: Authentication System error
1015 Init/AC: Maximum number of simultaneous sessions for Userid
1016 Init/AC: Blocked network address
1017 Init/AC: No databases available for specified userId
1018 Init/AC: System temporarily out of resources
1019 Init/AC: System not available due to maintenance
1020 Init/AC: System temporarily unavailable (Addinfo: when it’s expected back up)
1021 Init/AC: Account has expired
1022 Init/AC: Password has expired so a new one must be supplied

1023
Init/AC: Password has been changed by an administrator so a new one must be
supplied

1024 Unsupported Attribute
1025 Service not supported for this database
1026 Record cannot be opened because it is locked
1027 SQL error
1028 Record deleted
1029 Scan: too many terms requested. Addinfo: max terms supported
1040 ES: Invalid function
1041 ES: Error in retention time
1042 ES: Permissions data not understood
1043 ES: Invalid OID for task specific parameters
1044 ES: Invalid action
1045 ES: Unknown schema
1046 ES: Too many records in package
1047 ES: Invalid wait action
1048 ES: Cannot create task package -- exceeds maximum permissible size
1049 ES: Cannot return task package -- exceeds maximum permissible size
1050 ES: Extended services request too large
1051 Scan: Attribute set id required -- not supplied

1052
ES: Cannot process task package record -- exceeds maximum permissible
record size for ES

1053
ES: Cannot return task package record -- exceeds maximum permissible record
size for ES response

1054 Init: Required negotiation record not included
1055 Init: negotiation option required
1056 Attribute not supported for database
1057 ES: Unsupported value of task package parameter
1058 Duplicate Detection: Cannot dedup on requested record portion
1059 Duplicate Detection: Requested detection criterion not supported
1060 Duplicate Detection: Requested level of match not supported

YAZ User’s Guide and Reference 175 / 186

Code Text
1061 Duplicate Detection: Requested regular expression not supported
1062 Duplicate Detection: Cannot do clustering
1063 Duplicate Detection: Retention criterion not supported
1064 Duplicate Detection: Requested number (or percentage) of entries
1065 Duplicate Detection: Requested sort criterion not supported
1066 CompSpec: Unknown schema, or schema not supported.
1067 Encapsulation: Encapsulated sequence of PDUs not supported

1068
Encapsulation: Base operation (and encapsulated PDUs) not executed based on
pre-screening analysis

1069 No syntaxes available for this request
1070 user not authorized to receive record(s) in requested syntax
1071 preferredRecordSyntax not supplied
1072 Query term includes characters that do not translate into the target character set
1073 Database records do not contain data associated with access point
1074 Proxy failure

YAZ User’s Guide and Reference 177 / 186

Appendix C

SRU diagnostics

List of SRU diagnostics that are known to YAZ.

Code Text
1 Permanent system error
2 System temporarily unavailable
3 Authentication error
4 Unsupported operation
5 Unsupported version
6 Unsupported parameter value
7 Mandatory parameter not supplied
8 Unsupported parameter
10 Query syntax error
11 Unsupported query type
12 Too many characters in query
13 Invalid or unsupported use of parentheses
14 Invalid or unsupported use of quotes
15 Unsupported context set
16 Unsupported index
17 Unsupported combination of index and context set
18 Unsupported combination of indexes
19 Unsupported relation
20 Unsupported relation modifier
21 Unsupported combination of relation modifiers
22 Unsupported combination of relation and index
23 Too many characters in term
24 Unsupported combination of relation and term
25 Special characters not quoted in term
26 Non special character escaped in term
27 Empty term unsupported
28 Masking character not supported
29 Masked words too short
30 Too many masking characters in term
31 Anchoring character not supported

Code Text
32 Anchoring character in unsupported position
33 Combination of proximity/adjacency and masking characters not supported
34 Combination of proximity/adjacency and anchoring characters not supported
35 Term contains only stopwords
36 Term in invalid format for index or relation
37 Unsupported boolean operator
38 Too many boolean operators in query
39 Proximity not supported
40 Unsupported proximity relation
41 Unsupported proximity distance
42 Unsupported proximity unit
43 Unsupported proximity ordering
44 Unsupported combination of proximity modifiers
45 Prefix assigned to multiple identifiers
46 Unsupported boolean modifier
47 Cannot process query; reason unknown
48 Query feature unsupported
49 Masking character in unsupported position
50 Result sets not supported
51 Result set does not exist
52 Result set temporarily unavailable
53 Result sets only supported for retrieval
54 Retrieval may only occur from an existing result set
55 Combination of result sets with search terms not supported
56 Only combination of single result set with search terms supported
57 Result set created but no records available
58 Result set created with unpredictable partial results available
59 Result set created with valid partial results available
60 Result set not created: too many matching records
61 First record position out of range
62 Negative number of records requested
63 System error in retrieving records
64 Record temporarily unavailable
65 Record does not exist
66 Unknown schema for retrieval
67 Record not available in this schema
68 Not authorised to send record
69 Not authorised to send record in this schema
70 Record too large to send
71 Unsupported record packing
72 XPath retrieval unsupported
73 XPath expression contains unsupported feature
74 Unable to evaluate XPath expression
80 Sort not supported
81 Unsupported sort type
82 Unsupported sort sequence

YAZ User’s Guide and Reference 179 / 186

Code Text
83 Too many records to sort
84 Too many sort keys to sort
85 Duplicate sort keys
86 Cannot sort: incompatible record formats
87 Unsupported schema for sort
88 Unsupported path for sort
89 Path unsupported for schema
90 Unsupported direction value
91 Unsupported case value
92 Unsupported missing value action
93 Sort ended due to missing value
100 Explain not supported
101 Explain request type not supported (SOAP vs GET)
102 Explain record temporarily unavailable
110 Stylesheets not supported
111 Unsupported stylesheet
120 Response position out of range
121 Too many terms requested
235 Database does not exist
236 Access to specified database denied
1015 Init/AC: Maximum number of simultaneous sessions for Userid
1074 Proxy failure

YAZ User’s Guide and Reference 181 / 186

Appendix D

License

D.1 Index Data Copyright

Copyright © 1995-2023 Index Data.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Index Data nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY INDEX DATA ``AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL INDEX DATA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

YAZ User’s Guide and Reference 183 / 186

Appendix E

About Index Data

Index Data is a consulting and software-development enterprise that specializes in library and information
management systems. Our interests and expertise span a broad range of related fields, and one of our
primary, long-term objectives is the development of a powerful information management system with open
network interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the network-
ing community, and to further the development of quality software for open network communication.

We’ll be happy to answer questions about the software, and about ourselves in general.

The Hacker’s Jargon File has the following to say about the use of the prefix "YA" in the name of a software
product.

[?, ?]

YAZ User’s Guide and Reference 185 / 186

Appendix F

Credits

This appendix lists individuals that have contributed in the development of YAZ. Some have contributed
with code, while others have provided bug fixes or suggestions. If we’re missing somebody, of if you, for
whatever reason, don’t like to be listed here, let us know.

• Gary Anderson

• Dimitrios Andreadis

• Morten Bøgeskov

• Rocco Carbone

• Matthew Carey

• Hans van Dalen

• Irina Dijour

• Larry E. Dixson

• Hans van den Dool

• Mads Bondo Dydensborg

• Franck Falcoz

• Kevin Gamiel

• Morten Garkier Hendriksen

• Morten Holmqvist

• Ian Ibbotson

• Shigeru Ishida

• Heiko Jansen

• David Johnson

• Oleg Kolobov

• Giannis Kosmas

• Kang-Jin Lee

• Pieter Van Lierop

• Stefan Lohrum

• Ronald van der Meer

• Thomas W. Place

• Peter Popovics

• Jacob Chr. Poulsen

• Ko van der Sloot

• Mike Taylor

• Rustam T. Usmanov

• Charles Woodfield

• Tom André Øverland

• Hugh McMaster

• Guillaume Jactat

	Introduction
	Reading this Manual
	The API

	Compilation and Installation
	Introduction
	UNIX/MacOS
	Compiling from source on Unix
	Compiling from source on MacOS
	How to make apps using YAZ on UNIX

	Windows
	Compiling from Source on Windows
	How to make apps using YAZ on Windows
	Compiling Libxml2 and Libxslt on windows

	ZOOM
	Connections
	Z39.50 Protocol behavior
	SRU/Solr Protocol behavior

	Queries
	Result sets
	Z39.50 Result-set Sort
	Z39.50 Protocol behavior
	SRU Protocol behavior

	Records
	Z39.50 Protocol behavior
	SRU/Solr Protocol behavior

	ZOOM Facets
	Scan
	Extended Services
	Item Order
	Record Update
	Database Create
	Database Drop
	Commit Operation
	Protocol behavior

	Options
	Query conversions
	Events

	Generic server
	Introduction
	The Database Frontend
	The Backend API
	Your main() Routine
	The Backend Functions
	Init
	Search and Retrieve
	Delete
	Scan

	Application Invocation
	GFS Configuration and Virtual Hosts

	The Z39.50 ASN.1 Module
	Introduction
	Preparing PDUs
	EXTERNAL Data
	PDU Contents Table

	SOAP and SRU
	Introduction
	HTTP
	SOAP Packages
	SRU

	Supporting Tools
	Query Syntax Parsers
	Prefix Query Format
	Using Proximity Operators with PQF
	PQF queries

	CCL
	CCL Syntax
	CCL Qualifiers
	Qualifier specification
	Qualifier alias
	Comments
	Directives

	CCL API

	CQL
	CQL parsing
	CQL tree
	CQL to PQF conversion
	Specification of CQL to RPN mappings
	CQL to XCQL conversion
	PQF to CQL conversion

	Object Identifiers
	OID database
	Standard OIDs

	Nibble Memory
	Log
	MARC
	TurboMARC

	Retrieval Facility
	Retrieval XML format
	Retrieval Facility Examples
	API

	Sorting
	Using the Z39.50 sort service
	Type-7 sort

	Facets

	The ODR Module
	Introduction
	Using ODR
	ODR Streams
	Memory Management
	Encoding and Decoding Data
	Printing
	Diagnostics
	Summary and Synopsis

	Programming with ODR
	The Primitive ASN.1 Types
	INTEGER
	BOOLEAN
	REAL
	NULL
	OCTET STRING
	BIT STRING
	OBJECT IDENTIFIER

	Tagging Primitive Types
	Constructed Types
	Tagging Constructed Types
	Implicit Tagging
	Explicit Tagging

	SEQUENCE OF
	CHOICE Types

	Debugging

	The COMSTACK Module
	Synopsis (blocking mode)
	Introduction
	Common Functions
	Managing Endpoints
	Data Exchange

	Client Side
	Server Side
	Addresses
	SSL
	Diagnostics
	Summary and Synopsis

	Future Directions
	Reference
	yaz-client
	yaz-ztest
	yaz-config
	yaz
	zoomsh
	yaz-asncomp
	yaz-marcdump
	yaz-iconv
	yaz-log
	yaz-illclient
	yaz-icu
	yaz-url
	Bib-1 Attribute Set
	yaz-json-parse
	yaz-record-iconv

	List of Object Identifiers
	Bib-1 diagnostics
	SRU diagnostics
	License
	Index Data Copyright

	About Index Data
	Credits

